// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/gradient_accumulator.h" #include #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/selected_rows_utils.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/platform/complex.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/pten/kernels/funcs/math_function.h" #ifdef PADDLE_WITH_XPU #include "xpu/refactor/math.h" #endif #ifdef PADDLE_WITH_ASCEND_CL #include "paddle/fluid/platform/device/npu/npu_op_runner.h" #endif #ifdef PADDLE_WITH_MLU #include "paddle/fluid/operators/mlu/mlu_baseop.h" #endif namespace paddle { namespace imperative { static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src, bool force_copy) { if (!force_copy) { VLOG(6) << "Just Move Variable when sum gradients within this graph"; *dst = std::move(*src); return; } VLOG(6) << "Copy occurs when sum gradients within this graph"; if (src->IsType()) { auto& src_tensor = src->Get(); if (!dst->IsType()) { dst->Clear(); } auto* dst_tensor = dst->GetMutable(); framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor); dst_tensor->set_lod(src_tensor.lod()); } else if (src->IsType()) { auto& src_selected_rows = src->Get(); if (!dst->IsType()) { dst->Clear(); } auto* dst_selected_rows = dst->GetMutable(); framework::TensorCopy(src_selected_rows.value(), src_selected_rows.value().place(), dst_selected_rows->mutable_value()); dst_selected_rows->set_rows(src_selected_rows.rows()); dst_selected_rows->set_height(src_selected_rows.height()); } else { PADDLE_THROW(platform::errors::PermissionDenied( "Only support LoDTensor and SelectedRows for sum gradient")); } } template class TensorAddFunctor : public boost::static_visitor<> { public: TensorAddFunctor(int64_t numel, const T* x, T* y) : numel_(numel), x_(x), y_(y) {} void operator()(const platform::CPUPlace& place) const { platform::CPUDeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #ifdef PADDLE_WITH_XPU void operator()(const platform::XPUPlace& place) const { using XPUType = typename XPUTypeTrait::Type; platform::XPUDeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); int r = xpu::add( ctx->x_context(), reinterpret_cast(x_), reinterpret_cast(y_), reinterpret_cast(y_), static_cast(numel_)); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External("XPU add kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); } #else void operator()(const platform::XPUPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) void operator()(const platform::CUDAPlace& place) const { platform::CUDADeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #else void operator()(const platform::CUDAPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #endif #ifdef PADDLE_WITH_MLU void operator()(const platform::MLUPlace& place) const { // TODO(fwg): SUPPORT it PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #else void operator()(const platform::MLUPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #endif #ifdef PADDLE_WITH_ASCEND_CL void operator()(const platform::NPUPlace& place) const { // TODO(zhiqiu): SUPPORT it PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #else void operator()(const platform::NPUPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } #endif void operator()(const platform::NPUPinnedPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } // there is NO blas in CUDAPinnedPlace void operator()(const platform::CUDAPinnedPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } // there is NO support in IPUPlace void operator()(const platform::IPUPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } void operator()(const platform::CustomPlace& place) const { PADDLE_THROW(platform::errors::PermissionDenied( "Gradient accumulation on place (%s) " "is not supported in imperative mode", place)); } private: int64_t numel_; const T* x_; mutable T* y_; }; #ifdef PADDLE_WITH_XPU template void XPUTensorAddFunctor(const platform::Place& place, const framework::Tensor& src, framework::Tensor* dst) { using XPUType = typename XPUTypeTrait::Type; platform::XPUDeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); const XPUType* x = reinterpret_cast(src.data()); XPUType* y = reinterpret_cast(dst->mutable_data(place)); int r = xpu::add(ctx->x_context(), x, y, y, static_cast(src.numel())); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External("XPU add kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); } #endif template void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst, const platform::Place& place) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); paddle::platform::DeviceContext* ctx = pool.Get(place); auto dev_ctx = dynamic_cast(ctx); pten::funcs::ElementwiseAddTo func; func(dev_ctx, src, dst); } template TType* GetInnerMutableTensor(framework::Variable* dst) { auto* dst_tensor = dst->GetMutable(); return dst_tensor; } template TType* GetInnerMutableTensor(paddle::experimental::Tensor* dst) { auto* dst_tensor = static_cast(dst->impl().get()); return dst_tensor; } template const TType& GetInnerTensor(const framework::Variable& src) { return src.Get(); } template TType& GetInnerTensor(const paddle::experimental::Tensor& src) { PADDLE_ENFORCE_EQ( src.initialized(), true, platform::errors::Fatal("We only add tensor with value if a tensor is " "NOT INITILIZED, it should just move instead of " "calling this method.")); auto* src_tensor = static_cast(src.impl().get()); return *src_tensor; } template TType* GetEmptyInnerTensor(paddle::experimental::Tensor* dst) { PADDLE_ENFORCE_EQ( dst->defined(), false, platform::errors::Fatal( "The underlying Tensor implementation should be nullptr")); dst->set_impl(std::make_shared()); auto* dst_tensor = static_cast(dst->impl().get()); return dst_tensor; } template TType* GetEmptyInnerTensor(paddle::imperative::VariableWrapper* dst) { auto* dst_tensor = dst->MutableVar()->GetMutable(); return dst_tensor; } template void TensorAdd(const VarType& src, VarType* dst) { pten::DenseTensor* dst_tensor = GetInnerMutableTensor(dst); const pten::DenseTensor& src_tensor = GetInnerTensor(src); auto numel = src_tensor.numel(); // FIXME(minqiyang): loss_grad op will pass a zero grad of label // ugly fix for it if (numel == 0) { return; } PADDLE_ENFORCE_EQ( dst_tensor->numel(), numel, platform::errors::PreconditionNotMet( "The number of elements of source tensor and destination tensor " "should be equal, but got the number of elements of source tensor is " "%zu and the number of elements of destination tensor is %zu.", numel, dst_tensor->numel())); auto data_type = framework::TransToProtoVarType(src_tensor.dtype()); auto place = src_tensor.place(); PADDLE_ENFORCE_EQ(framework::TransToProtoVarType(dst_tensor->dtype()), data_type, platform::errors::PreconditionNotMet( "The data type of source tensor and destination tensor " "should be equal, Otherwise, the calculation results " "will be incorrect.")); // if src and dst are in different place, copy dst to src's place if (dst_tensor->place() != place) { paddle::framework::TensorCopySync(*dst_tensor, place, dst_tensor); } #define PADDLE_TENSOR_ADD(cpp_type) \ if (data_type == framework::DataTypeTrait::DataType()) { \ TensorAddFunctor func( \ numel, src_tensor.data(), \ dst_tensor->mutable_data(place)); \ platform::VisitPlace(place, func); \ return; \ } #ifdef PADDLE_WITH_ASCEND_CL if (platform::is_npu_place(place)) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContext* ctx = pool.Get(place); auto dev_ctx = dynamic_cast(ctx); if (data_type == framework::DataTypeTrait::DataType()) { dst_tensor->mutable_data(place); } else if (data_type == framework::DataTypeTrait::DataType()) { dst_tensor->mutable_data(place); } else if (data_type == framework::DataTypeTrait::DataType()) { dst_tensor->mutable_data(place); } else { PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); } const auto& runner = operators::NpuOpRunner( "Add", {*dst_tensor, src_tensor}, {*dst_tensor}, {}); runner.Run(dev_ctx->stream()); return; } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE if (platform::is_custom_place(place)) { PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); } #endif #ifdef PADDLE_WITH_XPU if (platform::is_xpu_place(place)) { if (data_type == framework::DataTypeTrait::DataType()) { XPUTensorAddFunctor(place, src_tensor, dst_tensor); } else if (data_type == framework::DataTypeTrait::DataType()) { XPUTensorAddFunctor(place, src_tensor, dst_tensor); } else { PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); } return; } #endif #ifdef PADDLE_WITH_MLU if (platform::is_mlu_place(place)) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContext* ctx = pool.Get(place); auto dev_ctx = dynamic_cast(ctx); if (data_type == framework::DataTypeTrait::DataType()) { dst_tensor->mutable_data(place); } else if (data_type == framework::DataTypeTrait::DataType()) { dst_tensor->mutable_data(place); } else { PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); } static const float alpha = 1.f; static const float beta = 1.f; operators::MLUCnnlTensorDesc src_tensor_desc(src_tensor); operators::MLUCnnlTensorDesc dst_tensor_desc(*dst_tensor); PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignAdd( dev_ctx->cnnl_handle(), static_cast(&alpha), src_tensor_desc.get(), operators::GetBasePtr(&src_tensor), nullptr, 0, static_cast(&beta), dst_tensor_desc.get(), operators::GetBasePtr(dst_tensor))); return; } #endif PADDLE_TENSOR_ADD(float); #ifndef PADDLE_WITH_XPU // NOTE(phlrain): xpu only support float PADDLE_TENSOR_ADD(double); // NOTE(chenweihang): only support complex grad tensor accumulated, // support selected rows if needed in the future PADDLE_TENSOR_ADD(platform::complex); PADDLE_TENSOR_ADD(platform::complex); #endif #undef PADDLE_TENSOR_ADD if (data_type == framework::proto::VarType::FP16) { if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) return TensorAddImpl( src_tensor, dst_tensor, place); #else PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); #endif } else if (platform::is_cpu_place(place)) { return TensorAddImpl( src_tensor, dst_tensor, place); } } PADDLE_THROW(platform::errors::Unimplemented( "Gradient accumulation of data type (%s) on place (%s) is not " "supported in imperative mode", framework::DataTypeToString(data_type), place)); } template void TensorAdd(const framework::Variable& src, framework::Variable* dst); template void TensorAdd( const paddle::experimental::Tensor& src, paddle::experimental::Tensor* dst); template void SelectedRowsAddToTensor(const VarType& src, VarType* dst) { pten::DenseTensor* dst_tensor = GetInnerMutableTensor(dst); const pten::SelectedRows& src_selected_rows = GetInnerTensor(src); auto place = dst_tensor->place(); auto data_type = framework::TransToProtoVarType(src_selected_rows.value().dtype()); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); #define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type) \ if (data_type == framework::DataTypeTrait::DataType()) { \ paddle::platform::DeviceContext* dev_ctx = pool.Get(place); \ paddle::operators::math::SelectedRowsAddToTensor \ functor; \ functor(*(dynamic_cast(dev_ctx)), src_selected_rows, \ dst_tensor); \ return; \ } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (paddle::platform::is_gpu_place(place)) { PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float); PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double); } else { #endif PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float); PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) } #endif #undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR PADDLE_THROW(platform::errors::InvalidArgument( "Not supported data type %s for SelectedRowsAddToTensor", framework::DataTypeToString(data_type))); } template void SelectedRowsAddToTensor(const framework::Variable& src, framework::Variable* dst); template void SelectedRowsAddToTensor(const paddle::experimental::Tensor& src, paddle::experimental::Tensor* dst); template void SelectedRowsAddTensor(const VarType& src_selected_rows_var, const VarType& src_tensor_var, VarType* dst_tensor_var) { const pten::SelectedRows& src_selected_rows = GetInnerTensor(src_selected_rows_var); const pten::DenseTensor& src_tensor = GetInnerTensor(src_tensor_var); const auto& place = src_tensor.place(); auto data_type = framework::TransToProtoVarType(src_tensor.dtype()); auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place); pten::DenseTensor* dst_tensor = GetInnerMutableTensor(dst_tensor_var); dst_tensor->Resize(src_tensor.dims()); dst_tensor->mutable_data(place, src_tensor.dtype()); #define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type) \ if (data_type == framework::DataTypeTrait::DataType()) { \ paddle::operators::math::SelectedRowsAddTensor \ functor; \ functor(*(dynamic_cast(dev_ctx)), src_selected_rows, \ src_tensor, dst_tensor); \ return; \ } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (platform::is_gpu_place(place)) { PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float); PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double); } else { #endif PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float); PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) } #endif PADDLE_THROW(platform::errors::InvalidArgument( "Not supported data type %s for SelectedRowsAddToTensor", framework::DataTypeToString(data_type))); #undef PADDLE_SELECTED_ROWS_ADD_TENSOR } template void SelectedRowsAddTensor( const framework::Variable& src_selected_rows_var, const framework::Variable& src_tensor_var, framework::Variable* dst_tensor_var); template void SelectedRowsAddTensor( const paddle::experimental::Tensor& src_selected_rows_var, const paddle::experimental::Tensor& src_tensor_var, paddle::experimental::Tensor* dst_tensor_var); // Note(chenweihang): when two selected rows need to be added, // adding one to another is not equal to merging two selected rows // to one then add it to a empty selected rows, the after is correct template std::shared_ptr SelectedRowsMerge(const VarType& src1, const VarType& src2) { const pten::SelectedRows& src_selected_rows1 = GetInnerTensor(src1); const pten::SelectedRows& src_selected_rows2 = GetInnerTensor(src2); auto place = src_selected_rows1.value().place(); auto data_type = framework::TransToProtoVarType(src_selected_rows1.value().dtype()); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); std::vector src_selected_rows; src_selected_rows.emplace_back(&src_selected_rows1); src_selected_rows.emplace_back(&src_selected_rows2); auto dst_var = std::make_shared("Temp"); pten::SelectedRows* dst_selected_rows = GetEmptyInnerTensor(dst_var.get()); #define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type) \ if (data_type == framework::DataTypeTrait::DataType()) { \ paddle::platform::DeviceContext* dev_ctx = pool.Get(place); \ paddle::operators::math::scatter::MergeAdd \ merge_add; \ merge_add(*(dynamic_cast(dev_ctx)), src_selected_rows, \ dst_selected_rows); \ return dst_var; \ } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (paddle::platform::is_gpu_place(place)) { PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float); PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double); } else { #endif PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float); PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) } #endif #undef PADDLE_SELECTED_ROWS_ADD PADDLE_THROW(platform::errors::InvalidArgument( "Not supported data type %s for SelectedRowsMerge", framework::DataTypeToString(data_type))); } template std::shared_ptr SelectedRowsMerge( const paddle::experimental::Tensor& src1, const paddle::experimental::Tensor& src2); template std::shared_ptr SelectedRowsMerge( const framework::Variable& src1, const framework::Variable& src2); void VariableWrapperAdd(std::shared_ptr var, VariableWrapper* dst_var, bool unchange_input) { auto& src = var->Var(); auto* dst = dst_var->MutableVar(); if (dst->IsType()) { if (src.IsType()) { TensorAdd(src, dst); } else if (src.IsType()) { SelectedRowsAddToTensor(src, dst); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Unexpected branch, output variable type is %s", framework::ToTypeName(dst->Type()))); } } else { if (src.IsType()) { if (unchange_input) { framework::Variable new_dst; SelectedRowsAddTensor(*dst, src, &new_dst); *dst = std::move(new_dst); } else { auto* src_mutable = var->MutableVar(); SelectedRowsAddToTensor(*dst, src_mutable); *dst = std::move(*(var->MutableVar())); } } else if (src.IsType()) { auto temp = SelectedRowsMerge(src, *dst); *dst = std::move(*(temp->MutableVar())); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Unexpected branch, output variable type is %s", framework::ToTypeName(dst->Type()))); } } } static platform::Place GetPlaceOfVar( const std::shared_ptr& var) { platform::Place place; if (var->Var().IsType()) { place = var->Var().Get().place(); } else if (var->Var().IsType()) { place = var->Var().Get().place(); } else { PADDLE_THROW(platform::errors::InvalidArgument( "only support LoDTensor and SelectedRows in dygraph")); } return place; } void GradientAccumulator::AccumulateGrad() { /** * If the leaf gradient has been calculated done, the inner_var_ * should be added to the var_. */ if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) { return; } PADDLE_ENFORCE_EQ(HasInnerVar(), true, platform::errors::InvalidArgument( "Leaf tensor should have inner var to store results of " "this auto-grad")); PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(), true, platform::errors::InvalidArgument( "Interior var of Leaf tensor should be initialized.")); auto* src = inner_var_->MutableVar(); auto* dst = var_->MutableVar(); if (!var_->IsEmpty()) { VLOG(6) << "Leaf Var(" << var_->Name() << ")'s Gradient has been initizlized, will accumulate on " "previous gradient."; if (dst->IsType()) { if (src->IsType()) { TensorAdd(*src, dst); } else if (src->IsType()) { SelectedRowsAddToTensor(*src, dst); } } else if (dst->IsType()) { if (src->IsType()) { SelectedRowsAddToTensor(*dst, src); *dst = std::move(*src); } else if (src->IsType()) { auto temp = SelectedRowsMerge(*src, *dst); *dst = std::move(*(temp->MutableVar())); } } else { PADDLE_THROW(platform::errors::PermissionDenied( "Only support LoDTensor and SelectedRows for gradient var")); } } else { VLOG(6) << "Leaf Var(" << var_->Name() << ")'s Gradient has not been initialized, not accumulate. Just move"; *(dst) = std::move(*src); var_->SetType(inner_var_->Type()); var_->SetDataType(inner_var_->DataType()); var_->SetIsEmpty(false); } inner_var_.reset(); } void GradientAccumulator::CallGradientHooks() { PADDLE_ENFORCE_EQ(var_->IsLeafGrad(), true, platform::errors::Unavailable( "Only leaf gradient Tensor can deal with by gradient " "hook in gradient accumulator.")); PADDLE_ENFORCE_EQ( SumGradCompleted(), true, platform::errors::PreconditionNotMet( "Only can call gradient hooks after sum gradient completed.")); PADDLE_ENFORCE_EQ( HasInnerVar(), true, platform::errors::PreconditionNotMet( "Leaf Tensor's inner var is nullptr when call gradient hook.")); PADDLE_ENFORCE_EQ( inner_var_->Var().IsInitialized(), true, platform::errors::PreconditionNotMet("Leaf Tensor's inner var " "is not initialized when " "call gradient hook.")); if (var_->HasVariableWrapperHook()) { VLOG(3) << "Call " << var_->GetVariableWrapperHooks().size() << " hooks of leaf gradient accumulator's inner var `" << var_->Name() << "`."; auto tmp_var = inner_var_; VLOG(3) << "Input var " << var_->Name() << "'s hook size - " << var_->GetVariableWrapperHooks().size(); for (const auto& hook_pair : var_->GetVariableWrapperHooks()) { tmp_var = (*hook_pair.second)(tmp_var); } inner_var_ = tmp_var; } } void GradientAccumulator::CallReduceHooks() { PADDLE_ENFORCE_EQ( var_->IsLeafGrad(), true, platform::errors::Unavailable("Only leaf gradient Tensor can deal with " "by reduce hook in gradient accumulator.")); PADDLE_ENFORCE_EQ(SumGradCompleted(), true, platform::errors::PreconditionNotMet( "Only can call reduce hooks after the gradient " "summation is completed in current batch.")); PADDLE_ENFORCE_EQ(HasInnerVar(), false, platform::errors::PreconditionNotMet( "Only can call reduce hooks after the " "gradient accumulation is completed in " "current batch or across batchs.")); if (var_->HasVoidHook()) { for (const auto& hook : var_->GetVoidHooks()) { VLOG(3) << "call gradient accumulator backward hooks."; (*hook)(); } } } void EagerGradientAccumulator::SumGrad(std::shared_ptr var, size_t trace_id, bool unchange_input) { /** * If var has grad node, it indicates that this var would be an input * of a grad op. Therefore, it should not be changed. */ if (var->HasGradNode()) { unchange_input = true; } auto* dst_var = Var(); platform::Place place = GetPlaceOfVar(var); if (!dst_var->OverridedStopGradient()) { if (CurCnt() == 0) { MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input); } else { VLOG(6) << "Sum Gradient for: " << dst_var->Name() << " within this graph."; VariableWrapperAdd(var, dst_var, unchange_input); } } else { if (!dst_var->Var().IsInitialized() || !dst_var->Var().Get().IsInitialized()) { VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero "; auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place); if (!dst_var->Var().IsInitialized()) { auto* tensor = dst_var->MutableVar()->GetMutable(); VLOG(6) << "Dims of " << dst_var->Name() << " is set as: " << var->Var().Get().dims(); tensor->Resize(var->Var().Get().dims()); tensor->mutable_data(place, framework::TransToPtenDataType(var->DataType())); pten::funcs::set_constant(*dev_ctx, tensor, 0.0); } else { auto* tensor = dst_var->MutableVar()->GetMutable(); tensor->mutable_data(place, framework::TransToPtenDataType(var->DataType())); pten::funcs::set_constant(*dev_ctx, tensor, 0.0); } } } // Type may be changed after OP run, such as VarTypeInference // so synchronous VariableWrapper with Variable. if (dst_var->Var().IsType()) { dst_var->SetType(framework::proto::VarType::LOD_TENSOR); } else if (dst_var->Var().IsType()) { dst_var->SetType(framework::proto::VarType::SELECTED_ROWS); } // Increase curent count IncreaseCurCnt(); } void SortedGradientAccumulator::SumGrad(std::shared_ptr var, size_t trace_id, bool unchange_input) { auto* dst_var = Var(); platform::Place place = GetPlaceOfVar(var); if (!dst_var->OverridedStopGradient()) { if (ref_cnt_ == 1) { MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input || var->HasGradNode()); } else { if (tmp_grad_vars_.empty()) { tmp_grad_vars_.reserve(ref_cnt_); } tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input); if (tmp_grad_vars_.size() != ref_cnt_) { return; } VLOG(6) << "Sum Gradient for: " << dst_var->Name() << " within this graph."; std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(), [](const SavedVarInfo& info1, const SavedVarInfo& info2) { return info1.trace_id > info2.trace_id; }); for (auto& var_info : tmp_grad_vars_) { if (var_info.var->HasGradNode()) { var_info.unchange_input = true; } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (paddle::platform::is_gpu_place(place)) { // sum selected rows firstly for (auto& var_info : tmp_grad_vars_) { if (!var_info.var->Var().IsType()) { continue; } if (CurCnt() == 0) { MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(), var_info.unchange_input); } else { VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input); } var_info.var = nullptr; // Increase count IncreaseCurCnt(); } for (auto& var_info : tmp_grad_vars_) { if (!var_info.var) { continue; } PADDLE_ENFORCE_EQ(var_info.var->Var().IsType(), true, platform::errors::PermissionDenied( "Gradient var must be LoDTensor")); if (CurCnt() == 0) { MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(), var_info.unchange_input); } else { VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input); } var_info.var = nullptr; // Increase count IncreaseCurCnt(); } } else { #endif for (auto& var_info : tmp_grad_vars_) { if (!var_info.var) { continue; } PADDLE_ENFORCE_EQ( var_info.var->Var().IsType() || var_info.var->Var().IsType(), true, platform::errors::PermissionDenied("The type of Gradient " "var must be LoDTensor " "or SelectedRows")); if (CurCnt() == 0) { MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(), var_info.unchange_input); } else { VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input); } var_info.var = nullptr; // Increase count IncreaseCurCnt(); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) } #endif tmp_grad_vars_.clear(); } } else { if (!dst_var->Var().IsInitialized() || !dst_var->Var().Get().IsInitialized()) { VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero"; auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place); if (!dst_var->Var().IsInitialized()) { auto* tensor = dst_var->MutableVar()->GetMutable(); VLOG(6) << "Dims of " << dst_var->Name() << " is set as: " << var->Var().Get().dims(); tensor->Resize(var->Var().Get().dims()); tensor->mutable_data(place, framework::TransToPtenDataType(var->DataType())); pten::funcs::set_constant(*dev_ctx, tensor, 0.0); } else { auto* tensor = dst_var->MutableVar()->GetMutable(); tensor->mutable_data(place, framework::TransToPtenDataType(var->DataType())); pten::funcs::set_constant(*dev_ctx, tensor, 0.0); } } // looks like tmp_grad_vars will not have any member but just in case tmp_grad_vars_.clear(); } if (dst_var->Var().IsType()) { dst_var->SetType(framework::proto::VarType::LOD_TENSOR); } else if (dst_var->Var().IsType()) { dst_var->SetType(framework::proto::VarType::SELECTED_ROWS); } } } // namespace imperative } // namespace paddle