common.py 65.4 KB
Newer Older
S
shiyutang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
S
shiyutang 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
Z
zhiboniu 已提交
17
from ...fluid.dygraph import Flatten  # noqa: F401
18
from .. import functional as F
19
from ...fluid.framework import _dygraph_tracer
Z
zhiboniu 已提交
20
from paddle.nn import Layer
Z
zhiboniu 已提交
21
from paddle import in_dynamic_mode
22

23 24
__all__ = []

25

26
def _npairs(x, n):
27
    if isinstance(x, (paddle.Tensor, list, tuple)):
28 29 30 31 32
        return x
    x = [x] * (n * 2)
    return x


S
shiyutang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class Identity(Layer):
    r"""

    A placeholder identity operator that is argument-insensitive. For each input :math:`X` ,
    the output :math:`Out` is:

    .. math::

        Out = X

    Parameters:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .

    Examples:
        .. code-block:: python

          import paddle

          input_tensor = paddle.randn(shape=[3, 2])
          layer = paddle.nn.Identity()
          out = layer(input_tensor)
          # input_tensor: [[-0.32342386 -1.200079  ]
          #                [ 0.7979031  -0.90978354]
          #                [ 0.40597573  1.8095392 ]]
          # out: [[-0.32342386 -1.200079  ]
          #      [ 0.7979031  -0.90978354]
          #      [ 0.40597573  1.8095392 ]]


    """

    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


Z
zhiboniu 已提交
76
class Linear(Layer):
77
    r"""
78 79 80

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
81 82 83

    .. math::

84
        Out = XW + b
85

86
    where :math:`W` is the weight and :math:`b` is the bias.
87

88 89 90 91 92 93 94
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
95 96

    Parameters:
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
120 121 122 123 124

    Examples:
        .. code-block:: python

          import paddle
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = F.linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

175 176 177 178 179
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)

180

Z
zhiboniu 已提交
181
class Upsample(Layer):
182 183
    """
    This op resizes a batch of images.
184

185 186 187
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
188 189
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
190
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
191

192
    Supporting resample methods:
193 194 195 196 197 198
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
199 200 201
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

202 203 204 205 206 207 208 209 210
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
211

212 213 214 215
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
216 217 218 219 220

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
221
    align_corners and align_mode are optional parameters,the calculation method
222 223
    of interpolation can be selected by them.

224 225 226 227 228 229
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

230 231 232 233
    Example:

    .. code-block:: text

234
        For scale_factor:
235 236 237 238 239
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

240 241 242 243 244 245 246 247 248 249
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
250 251 252 253 254 255 256 257 258 259 260 261 262 263

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
264

265 266 267
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
268

269 270 271 272 273
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
274

275 276 277 278 279 280 281 282 283 284 285 286
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

309 310
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
311

312 313
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
314

315 316
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
317

318 319
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
320

321 322
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
323

324
    Parameters:
X
xiaoting 已提交
325
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
326
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
327
        size (list|tuple|Tensor|None): Output shape of image resize
328 329
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
330
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
331
             If a Tensor , its dimensions size should be a 1.
332 333 334
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
335
             Default: None.
336 337
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
338 339 340
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
341 342 343 344
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
345
        data_format (str, optional): Specify the data format of the input, and the data format of the output
346
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
347 348 349
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
350 351 352
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
353 354 355
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
356
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
357
    Raises:
X
xiaoting 已提交
358
        TypeError: size should be a list or tuple or Tensor.
359 360 361
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
362
        ValueError: 'bilinear' and 'bicubic'  only support 4-D tensor.
363
        ValueError: 'trilinear' only support 5-D tensor.
364
        ValueError: 'nearest' only support 4-D or 5-D tensor.
365 366 367 368 369
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
370 371
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
372
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
373 374 375

    Examples:
        .. code-block:: python
C
Chen Long 已提交
376
            
377
            import paddle
X
xiaoting 已提交
378
            import paddle.nn as nn
379
            import numpy as np
X
xiaoting 已提交
380

381
            input_data = np.random.rand(2,3,6,10).astype("float32")
382
            upsample_out  = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
383 384 385 386 387 388

            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]

389 390 391
    """

    def __init__(self,
392 393 394 395
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
X
xiaoting 已提交
396 397 398
                 align_mode=0,
                 data_format='NCHW',
                 name=None):
399
        super(Upsample, self).__init__()
400 401 402
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
403 404 405
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
406
        self.name = name
407

X
xiaoting 已提交
408
    def forward(self, x):
409
        out = F.interpolate(
X
xiaoting 已提交
410
            x,
411 412 413
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
414 415
            align_corners=self.align_corners,
            align_mode=self.align_mode,
X
xiaoting 已提交
416 417
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
418 419 420

        return out

421 422 423 424 425 426 427 428 429 430
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
            main_str, self.mode, self.align_corners, self.align_mode,
            self.data_format, name_str)

X
xiaoting 已提交
431

Z
zhiboniu 已提交
432
class UpsamplingNearest2D(Layer):
X
xiaoting 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
450
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
475
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingNearest2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='nearest',
            align_corners=False,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)

        return out

507 508 509 510 511 512 513 514 515
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
516

Z
zhiboniu 已提交
517
class UpsamplingBilinear2D(Layer):
X
xiaoting 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
537
             Default: None. If a list/tuple, each element can be an integer or a Tensor  of shape: [1].
X
xiaoting 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
561
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingBilinear2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='bilinear',
            align_corners=True,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
590 591 592

        return out

593 594 595 596 597 598 599 600 601
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
602

Z
zhiboniu 已提交
603
class Bilinear(Layer):
604
    r"""
605 606 607 608

    This layer performs bilinear on two inputs.

    .. math::
609

610
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,outfeatures-1
611

612 613 614 615 616 617
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
618
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size], and out's shape is [batch_size, out_features].
619 620 621 622 623 624 625
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
626
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
627 628 629
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
630
           If it is set to None, the bias is initialized zero. The default value is None.
631 632 633 634 635 636 637 638 639
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
640
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

    def __init__(self,
                 in1_features,
                 in2_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
            self._out_features, self._in1_features, self._in2_features
        ]
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False)
        bias_shape = [1, self._out_features]
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True)

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

691 692 693 694 695 696
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
            self._in1_features, self._in2_features, self._out_features,
            self._dtype, name_str)

697

Z
zhiboniu 已提交
698
class Dropout(Layer):
699 700 701
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
702
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
703 704 705 706
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
707 708

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
709 710

    Parameters:
711 712
        p (float|int): Probability of setting units to zero. Default: 0.5
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
713 714 715 716 717 718 719 720 721 722 723
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
724
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
725 726 727 728 729

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

730

731 732
    Examples:
        .. code-block:: python
733

734 735 736 737 738 739 740 741 742
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
743 744 745
            print(x)
            print(y_train)
            print(y_test)
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name)
        return out

766 767 768 769 770
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, axis={}, mode={}{}'.format(self.p, self.axis, self.mode,
                                                 name_str)

771

Z
zhiboniu 已提交
772
class Dropout2D(Layer):
773 774 775 776
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
777
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
778
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
779 780 781

    See ``paddle.nn.functional.dropout2d`` for more details.

782 783
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

784 785
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
786
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
787 788 789 790 791 792
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

793

794 795
    Examples:
        .. code-block:: python
796

797 798 799 800 801
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
802
            m = paddle.nn.Dropout2D(p=0.5)
803 804 805
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
806 807 808
            print(x)
            print(y_train)
            print(y_test)
809 810 811
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
C
cnn 已提交
812
        super(Dropout2D, self).__init__()
813 814 815 816 817 818 819 820 821 822 823 824 825 826

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

827 828 829 830 831
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

832

Z
zhiboniu 已提交
833
class Dropout3D(Layer):
834 835 836 837
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
838
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
839
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
840 841 842

    See ``paddle.nn.functional.dropout3d`` for more details.

843 844
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

845 846
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
847
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
848 849 850 851 852 853
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

854

855 856
    Examples:
        .. code-block:: python
857

858 859 860 861 862
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
863
            m = paddle.nn.Dropout3D(p=0.5)
864 865 866
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
867 868 869
            print(x)
            print(y_train)
            print(y_test)
870 871 872
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
C
cnn 已提交
873
        super(Dropout3D, self).__init__()
874 875 876 877 878 879 880 881 882 883 884 885 886 887

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

888 889 890 891 892
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

893

Z
zhiboniu 已提交
894
class AlphaDropout(Layer):
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
916

917 918 919 920 921 922 923 924 925
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
926 927
            print(x)
            print(y_train)
928
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
929
            print(y_test)
930 931 932 933 934 935 936 937 938 939 940 941
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name)
        return out

942 943 944 945
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}{}'.format(self.p, name_str)

946

Z
zhiboniu 已提交
947
class Pad1D(Layer):
L
littletomatodonkey 已提交
948
    """
L
littletomatodonkey 已提交
949 950 951
    This interface is used to construct a callable object of the ``Pad1D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
952 953

    Parameters:
954 955
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in both dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
956
            of input will be padded. The pad has the form (pad_left, pad_right).
L
littletomatodonkey 已提交
957 958 959 960 961 962
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
963 964 965 966 967
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
968 969

    Returns:
L
littletomatodonkey 已提交
970 971 972 973 974 975 976 977
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
L
littletomatodonkey 已提交
978
            mode = "constant"
L
littletomatodonkey 已提交
979 980 981 982 983 984
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
985

L
littletomatodonkey 已提交
986 987 988 989 990 991
            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
992 993 994
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
995
            result = my_pad(data)
L
littletomatodonkey 已提交
996
            print(result)
L
littletomatodonkey 已提交
997 998 999 1000
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

L
littletomatodonkey 已提交
1001 1002 1003 1004 1005 1006 1007
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCL",
                 name=None):
        super(Pad1D, self).__init__()
1008
        self._pad = _npairs(padding, 1)
L
littletomatodonkey 已提交
1009
        self._mode = mode
L
littletomatodonkey 已提交
1010
        self._value = value
L
littletomatodonkey 已提交
1011
        self._data_format = data_format
L
littletomatodonkey 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

1022 1023 1024 1025 1026
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1027

Z
zhiboniu 已提交
1028
class Pad2D(Layer):
L
littletomatodonkey 已提交
1029
    """
L
littletomatodonkey 已提交
1030 1031 1032 1033
    This interface is used to construct a callable object of the ``Pad2D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
1034 1035

    Parameters:
1036 1037 1038
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded. 
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom). 
L
littletomatodonkey 已提交
1039 1040 1041 1042 1043 1044
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1045 1046 1047 1048 1049
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1050 1051

    Returns:
L
littletomatodonkey 已提交
1052 1053 1054 1055 1056 1057 1058 1059
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
L
littletomatodonkey 已提交
1060
            mode = "constant"
L
littletomatodonkey 已提交
1061 1062 1063 1064 1065 1066
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
1067

L
littletomatodonkey 已提交
1068 1069 1070 1071 1072
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1073 1074 1075
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1076
            result = my_pad(data)
L
littletomatodonkey 已提交
1077
            print(result)
L
littletomatodonkey 已提交
1078 1079 1080 1081 1082 1083 1084
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

L
littletomatodonkey 已提交
1085 1086 1087 1088 1089 1090 1091
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCHW",
                 name=None):
        super(Pad2D, self).__init__()
1092
        self._pad = _npairs(padding, 2)
L
littletomatodonkey 已提交
1093
        self._mode = mode
L
littletomatodonkey 已提交
1094 1095 1096 1097 1098 1099 1100 1101
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1102
                     value=self._value,
L
littletomatodonkey 已提交
1103 1104 1105
                     data_format=self._data_format,
                     name=self._name)

1106 1107 1108 1109 1110
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
class ZeroPad2D(Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2D`` class.
    Pads the input tensor boundaries with zero.

    Parameters:
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - x(Tensor): The input tensor of zeropad2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of zeropad2d operator, which is a 4-D tensor.
          The data type is same as input x.

    Examples:
        Examples are as follows.

        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1

            my_pad = nn.ZeroPad2D(padding=pad)
            result = my_pad(data)

            print(result)
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2D, self).__init__()
        self._pad = _npairs(padding, 2)
        self._mode = 'constant'
        self._value = 0.
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, data_format={}{}'.format(
            self._pad, self._data_format, name_str)


Z
zhiboniu 已提交
1178
class Pad3D(Layer):
L
littletomatodonkey 已提交
1179
    """
L
littletomatodonkey 已提交
1180 1181 1182 1183
    This interface is used to construct a callable object of the ``Pad3D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1184 1185

    Parameters:
1186 1187
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1188
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
L
littletomatodonkey 已提交
1189 1190 1191 1192 1193 1194
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1195 1196 1197 1198 1199
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1200 1201

    Returns:
L
littletomatodonkey 已提交
1202 1203 1204 1205 1206 1207 1208 1209
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
L
littletomatodonkey 已提交
1210
            mode = "constant"
L
littletomatodonkey 已提交
1211 1212 1213 1214 1215 1216
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
1217

L
littletomatodonkey 已提交
1218 1219 1220 1221 1222
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1223 1224 1225
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1226
            result = my_pad(data)
L
littletomatodonkey 已提交
1227
            print(result)
L
littletomatodonkey 已提交
1228 1229 1230 1231 1232 1233 1234
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

L
littletomatodonkey 已提交
1235 1236 1237 1238 1239 1240 1241
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCDHW",
                 name=None):
        super(Pad3D, self).__init__()
1242
        self._pad = _npairs(padding, 3)
L
littletomatodonkey 已提交
1243
        self._mode = mode
L
littletomatodonkey 已提交
1244 1245 1246 1247 1248 1249 1250 1251
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1252
                     value=self._value,
L
littletomatodonkey 已提交
1253 1254 1255
                     data_format=self._data_format,
                     name=self._name)

1256 1257 1258 1259 1260
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1261

Z
zhiboniu 已提交
1262
class CosineSimilarity(Layer):
L
littletomatodonkey 已提交
1263
    """
1264
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1265 1266

    Parameters:
1267
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1268
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1269
    Returns:
L
littletomatodonkey 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1284
                axis = 1
L
littletomatodonkey 已提交
1285 1286 1287 1288 1289
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1290

L
littletomatodonkey 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1301
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1302
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1303
            print(result)
L
littletomatodonkey 已提交
1304 1305 1306
            # [0.99806249 0.9817672  0.94987036]
    """

1307
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1308
        super(CosineSimilarity, self).__init__()
1309
        self._axis = axis
L
littletomatodonkey 已提交
1310 1311 1312
        self._eps = eps

    def forward(self, x1, x2):
1313
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1314

1315 1316 1317
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1318

Z
zhiboniu 已提交
1319
class Embedding(Layer):
1320
    r"""
T
tangwei12 已提交
1321 1322 1323 1324
    **Embedding Layer**

    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1325
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1326
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1327
    input :attr:`num_embeddings` and :attr:`embedding_dim`.
T
tangwei12 已提交
1328 1329 1330 1331

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

T
tangwei12 已提交
1332
    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
T
tangwei12 已提交
1333 1334 1335 1336 1337 1338
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

T
tangwei12 已提交
1339 1340 1341
        x is a Tensor. padding_idx = -1
            x.data = [[1, 3], [2, 4], [4, 127]
            x.shape = [3, 2]
T
tangwei12 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
T
tangwei12 已提交
1359
        embedding_dim (int):  Just one element which indicate the size of each embedding vector respectively.
T
tangwei12 已提交
1360
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1361 1362 1363 1364 1365 1366 1367
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
T
tangwei12 已提交
1368
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
1369
            In these case, sparse must be False. Default: False.
T
tangwei12 已提交
1370
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1371
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1372 1373
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1374 1375
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
T
tangwei12 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1390 1391 1392 1393 1394
            import paddle
            import numpy as np

            x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
T
tangwei12 已提交
1395

T
tangwei12 已提交
1396 1397 1398 1399 1400 1401 1402
            x = paddle.to_tensor(x_data, stop_gradient=False)
            y = paddle.to_tensor(y_data, stop_gradient=False)

            embedding = paddle.nn.Embedding(10, 3, sparse=True)

            w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
            embedding.weight.set_value(w0)
T
tangwei12 已提交
1403

T
tangwei12 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()

            # weight.shape = [10, 3]

            # x.data = [[3],[4],[5]]
            # x.shape = [3, 1]

            # out.data = [[2,2,2], [2,2,2], [2,2,2]]
            # out.shape = [3, 1, 3]
            out=embedding(x)
            out.backward()
            adam.step()
T
tangwei12 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

    """

    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 padding_idx=None,
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(Embedding, self).__init__()
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1432
        self._padding_idx = padding_idx
T
tangwei12 已提交
1433 1434 1435 1436 1437 1438 1439

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1440 1441 1442 1443
        padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
            num_embeddings + padding_idx)

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
T
tangwei12 已提交
1444 1445 1446
            raise ValueError("padding_idx must be within [-{}, {})".format(
                num_embeddings, num_embeddings))

T
tangwei12 已提交
1447 1448 1449 1450 1451 1452
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
T
tangwei12 已提交
1453
        self.weight = self.create_parameter(
T
tangwei12 已提交
1454 1455 1456 1457 1458
            attr=self._weight_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

Z
zhiboniu 已提交
1459
        if in_dynamic_mode() and padding_idx != -1:
1460 1461
            with paddle.no_grad():
                self.weight[padding_idx] = 0.0
T
tangwei12 已提交
1462

T
tangwei12 已提交
1463 1464 1465
    def forward(self, x):
        return F.embedding(
            x,
T
tangwei12 已提交
1466
            weight=self.weight,
T
tangwei12 已提交
1467 1468 1469
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name)
1470 1471 1472 1473 1474 1475 1476 1477 1478

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)
F
FNRE 已提交
1479 1480


Z
zhiboniu 已提交
1481
class Unfold(Layer):
F
FNRE 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    """
    This op returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    See ``paddle.nn.functional.unfold`` for more details.

    
    Parameters:
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn((100,3,224,224))
            unfold = nn.Unfold(kernel_sizes=[3, 3])
            result = unfold(x)
            print(result)
X
xiaoting 已提交
1525
    """
F
FNRE 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

    def __init__(self,
                 kernel_sizes,
                 dilations=1,
                 paddings=0,
                 strides=1,
                 name=None):
        super(Unfold, self).__init__()

        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1542 1543 1544 1545 1546 1547 1548
        return F.unfold(
            input,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name)
F
FNRE 已提交
1549 1550 1551 1552 1553

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
                format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)
X
xiaoting 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642


class Fold(Layer):
    """

    This Op is used to combines an array of sliding local blocks into a large containing
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each 
    combined value in the resulting large tensor by summing all values from all containing blocks. 


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::

        H_out &= output_size[0]
        W_out &= output_size[1]
        C_out &= C_in / kernel\_sizes[0] / kernel\_sizes[1]

    Parameters:
        output_sizes(list):       The size of output size, should be [output_size_h, output_size_w]
                                  or an interger o treated as [o, o].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn([2,12,9])
            fold = nn.Fold(output_sizes=(4, 4), kernel_sizes=2)
            y = fold(x)
            # y.shape = [2,3,4,4]
   """

    def __init__(self,
                 output_sizes,
                 kernel_sizes,
                 dilations=1,
                 paddings=0,
                 strides=1,
                 name=None):
        super(Fold, self).__init__()

        self.output_sizes = output_sizes
        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
        return F.fold(
            input,
            output_sizes=self.output_sizes,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name)

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
                format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)