elementwise_div_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

35 36
// use default div function for int32/int64 type because of divison zero
// checking.
37 38 39 40 41 42 43
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
44
    default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
45 46 47
  }
};

48 49 50 51
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
68 69
};

H
hong 已提交
70 71
template <typename T>
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
72
 public:
H
hong 已提交
73
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
74 75

 protected:
76
  void Apply(GradOpPtr<T> op) const override {
77
    op->SetType("elementwise_div_grad");
78
    op->SetInput("X", this->Input("X"));
H
hong 已提交
79 80 81 82 83 84
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
85 86 87
  }
};

H
hong 已提交
88 89
template <typename T>
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
90
 public:
H
hong 已提交
91
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
92 93

 protected:
94
  void Apply(GradOpPtr<T> op) const override {
95
    op->SetType("elementwise_div_grad_grad");
H
hong 已提交
96 97 98 99 100
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
101

H
hong 已提交
102
    op->SetAttrMap(this->Attrs());
103

H
hong 已提交
104 105 106
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
107 108 109
  }
};

110 111 112
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
113
namespace ops = paddle::operators;
114

115 116
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
117 118 119 120 121 122 123
                  ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    elementwise_div_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
124

125
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
126
                  ops::ElementwiseDoubleGradOpInplace);
127

G
gongweibao 已提交
128 129
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
130 131 132 133
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
134 135
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
136 137 138 139
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
140 141 142 143 144 145 146 147 148 149 150

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);