elementwise_div_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
};

class ElementwiseDivGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_div_grad");
    op->SetInput("Y", Input("Y"));
    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class ElementwiseDivDoubleGradDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("elementwise_div_grad_grad");
    op->SetInput("Y", Input("Y"));
    op->SetInput("Out", Input("Out"));
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", Output(framework::GradVarName("X")));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetOutput("DOut", InputGrad("Out"));
    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));

    return op;
  }
};

88 89 90
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
91
namespace ops = paddle::operators;
92

93 94 95 96
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
                  ops::ElementwiseDivGradOpDescMaker);

97 98
REGISTER_OPERATOR(elementwise_div_grad, ops::ElementwiseOpGrad,
                  ops::ElementwiseDivDoubleGradDescMaker);
99 100
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
                  ops::ElementwiseDivDoubleGradOpInplace);
101

G
gongweibao 已提交
102 103
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
104 105 106 107
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
108 109
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
110 111 112 113
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
114 115 116 117 118 119 120 121 122 123 124

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);