elementwise_div_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

35 36
// use default div function for int32/int64 type because of divison zero
// checking.
37 38 39 40 41 42 43
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
44
    default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
45 46 47
  }
};

48 49 50 51
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
68 69
};

H
hong 已提交
70 71
template <typename T>
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
72
 public:
H
hong 已提交
73
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
74 75

 protected:
H
hong 已提交
76 77
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
78
    op->SetType("elementwise_div_grad");
H
hong 已提交
79 80 81 82 83 84
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
85 86 87 88
    return op;
  }
};

H
hong 已提交
89 90
template <typename T>
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
91
 public:
H
hong 已提交
92
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
93 94

 protected:
H
hong 已提交
95 96
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
97
    op->SetType("elementwise_div_grad_grad");
H
hong 已提交
98 99 100 101 102
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
103

H
hong 已提交
104
    op->SetAttrMap(this->Attrs());
105

H
hong 已提交
106 107 108
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
109 110 111 112 113

    return op;
  }
};

114 115 116
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
117
namespace ops = paddle::operators;
118

119 120
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
121 122 123 124 125 126 127
                  ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    elementwise_div_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
128

129 130
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
                  ops::ElementwiseDivDoubleGradOpInplace);
131

G
gongweibao 已提交
132 133
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
134 135 136 137
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
138 139
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
140 141 142 143
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
144 145 146 147 148 149 150 151 152 153 154

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);