test_elementwise_dev_api.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

W
Wilber 已提交
18
#include "paddle/pten/backends/cpu/cpu_context.h"
19
#include "paddle/pten/kernels/math_kernel.h"
20 21 22 23 24

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

25 26 27
namespace pten {
namespace tests {

28
namespace framework = paddle::framework;
29
using DDim = pten::framework::DDim;
30

31
TEST(DEV_API, add) {
32
  // 1. create tensor
33
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
34
      paddle::platform::CPUPlace());
35
  pten::DenseTensor dense_x(alloc.get(),
36 37 38
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
39 40
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
41

42
  pten::DenseTensor dense_y(alloc.get(),
43 44 45
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
46 47
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
48 49 50 51 52 53 54 55 56 57 58 59 60

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
61
  pten::CPUContext dev_ctx;
62
  auto dense_out = pten::Add<float>(dev_ctx, dense_x, dense_y);
63 64 65 66

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
67 68
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
69 70 71 72 73 74 75 76 77

  auto expect_result = sum;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
78 79 80

TEST(DEV_API, subtract) {
  // 1. create tensor
81
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
82
      paddle::platform::CPUPlace());
83
  pten::DenseTensor dense_x(alloc.get(),
84 85 86
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
87 88
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
89

90
  pten::DenseTensor dense_y(alloc.get(),
91 92 93
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
94 95
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
96 97 98 99 100 101 102 103 104 105 106 107 108

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
109
  pten::CPUContext dev_ctx;
110
  auto dense_out = pten::Subtract<float>(dev_ctx, dense_x, dense_y);
111 112 113 114

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
115
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
116 117 118 119 120 121 122 123 124 125
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sub;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
126 127 128

TEST(DEV_API, divide) {
  // 1. create tensor
129
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
130
      paddle::platform::CPUPlace());
131
  pten::DenseTensor dense_x(alloc.get(),
132 133 134
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
135 136
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
137

138
  pten::DenseTensor dense_y(alloc.get(),
139 140 141
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
142 143
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
144 145 146 147 148 149 150 151 152 153 154 155 156

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }

  // 2. test API
W
Wilber 已提交
157
  pten::CPUContext dev_ctx;
158
  auto dense_out = pten::Divide<float>(dev_ctx, dense_x, dense_y);
159 160 161 162

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
163 164
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
165 166 167 168 169 170 171 172 173

  auto expect_result = div;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
174

Y
YuanRisheng 已提交
175 176
TEST(DEV_API, multiply) {
  // 1. create tensor
177
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
Y
YuanRisheng 已提交
178
      paddle::platform::CPUPlace());
179
  pten::DenseTensor dense_x(alloc.get(),
Y
YuanRisheng 已提交
180 181 182
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
183 184
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
Y
YuanRisheng 已提交
185

186
  pten::DenseTensor dense_y(alloc.get(),
Y
YuanRisheng 已提交
187 188 189
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
190 191
  auto* dense_y_data =
      dense_y.mutable_data<float>(paddle::platform::CPUPlace());
Y
YuanRisheng 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204

  float mul[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      mul[i][j] = (i * 10 + j) * 1.0 * j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
205
  pten::CPUContext dev_ctx;
206
  auto dense_out = pten::Multiply<float>(dev_ctx, dense_x, dense_y);
Y
YuanRisheng 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);

  auto expect_result = mul;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
222 223
}  // namespace tests
}  // namespace pten