test_elementwise_dev_api.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/pten/kernels/math_kernel.h"
19 20 21 22 23

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

24 25 26
namespace pten {
namespace tests {

27 28 29
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

30
TEST(DEV_API, add) {
31
  // 1. create tensor
32
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
33
      paddle::platform::CPUPlace());
34
  pten::DenseTensor dense_x(alloc.get(),
35 36 37 38 39
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

40
  pten::DenseTensor dense_y(alloc.get(),
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
62
  auto dense_out = pten::Add<float>(
63 64 65 66 67 68 69 70
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
71 72
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
73 74 75 76 77 78 79 80 81

  auto expect_result = sum;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
82 83 84

TEST(DEV_API, subtract) {
  // 1. create tensor
85
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
86
      paddle::platform::CPUPlace());
87
  pten::DenseTensor dense_x(alloc.get(),
88 89 90 91 92
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

93
  pten::DenseTensor dense_y(alloc.get(),
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
  auto dense_out = pten::Subtract<float>(
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
124
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
125 126 127 128 129 130 131 132 133 134
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sub;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
135 136 137

TEST(DEV_API, divide) {
  // 1. create tensor
138
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
139
      paddle::platform::CPUPlace());
140
  pten::DenseTensor dense_x(alloc.get(),
141 142 143 144 145
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

146
  pten::DenseTensor dense_y(alloc.get(),
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
  auto dense_out = pten::Divide<float>(
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
177 178
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
179 180 181 182 183 184 185 186 187

  auto expect_result = div;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
188

Y
YuanRisheng 已提交
189 190
TEST(DEV_API, multiply) {
  // 1. create tensor
191
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
Y
YuanRisheng 已提交
192
      paddle::platform::CPUPlace());
193
  pten::DenseTensor dense_x(alloc.get(),
Y
YuanRisheng 已提交
194 195 196 197 198
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

199
  pten::DenseTensor dense_y(alloc.get(),
Y
YuanRisheng 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float mul[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      mul[i][j] = (i * 10 + j) * 1.0 * j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  int axis = 1;
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(paddle::platform::CPUPlace());

  // 2. test API
  auto dense_out = pten::Multiply<float>(
      *(static_cast<paddle::platform::CPUDeviceContext*>(dev_ctx)),
      dense_x,
      dense_y,
      axis);

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);

  auto expect_result = mul;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
241 242
}  // namespace tests
}  // namespace pten