test_elementwise_dev_api.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

W
Wilber 已提交
18
#include "paddle/pten/backends/cpu/cpu_context.h"
19
#include "paddle/pten/kernels/math_kernel.h"
20 21 22 23 24

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

25 26 27
namespace pten {
namespace tests {

28
namespace framework = paddle::framework;
29
using DDim = pten::framework::DDim;
30

31
TEST(DEV_API, add) {
32
  // 1. create tensor
33
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
34
      paddle::platform::CPUPlace());
35
  pten::DenseTensor dense_x(alloc.get(),
36 37 38 39 40
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

41
  pten::DenseTensor dense_y(alloc.get(),
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
59
  pten::CPUContext dev_ctx;
60
  auto dense_out = pten::Add<float>(dev_ctx, dense_x, dense_y);
61 62 63 64

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
65 66
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
67 68 69 70 71 72 73 74 75

  auto expect_result = sum;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
76 77 78

TEST(DEV_API, subtract) {
  // 1. create tensor
79
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
80
      paddle::platform::CPUPlace());
81
  pten::DenseTensor dense_x(alloc.get(),
82 83 84 85 86
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

87
  pten::DenseTensor dense_y(alloc.get(),
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
105
  pten::CPUContext dev_ctx;
106
  auto dense_out = pten::Subtract<float>(dev_ctx, dense_x, dense_y);
107 108 109 110

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
111
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
112 113 114 115 116 117 118 119 120 121
  ASSERT_EQ(dense_out.meta().layout, pten::DataLayout::NCHW);

  auto expect_result = sub;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
122 123 124

TEST(DEV_API, divide) {
  // 1. create tensor
125
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
126
      paddle::platform::CPUPlace());
127
  pten::DenseTensor dense_x(alloc.get(),
128 129 130 131 132
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

133
  pten::DenseTensor dense_y(alloc.get(),
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }

  // 2. test API
W
Wilber 已提交
151
  pten::CPUContext dev_ctx;
152
  auto dense_out = pten::Divide<float>(dev_ctx, dense_x, dense_y);
153 154 155 156

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
Y
YuanRisheng 已提交
157 158
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);
159 160 161 162 163 164 165 166 167

  auto expect_result = div;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
168

Y
YuanRisheng 已提交
169 170
TEST(DEV_API, multiply) {
  // 1. create tensor
171
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
Y
YuanRisheng 已提交
172
      paddle::platform::CPUPlace());
173
  pten::DenseTensor dense_x(alloc.get(),
Y
YuanRisheng 已提交
174 175 176 177 178
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({3, 10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x.mutable_data<float>();

179
  pten::DenseTensor dense_y(alloc.get(),
Y
YuanRisheng 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
                            pten::DenseTensorMeta(pten::DataType::FLOAT32,
                                                  framework::make_ddim({10}),
                                                  pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y.mutable_data<float>();

  float mul[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      mul[i][j] = (i * 10 + j) * 1.0 * j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }

  // 2. test API
W
Wilber 已提交
197
  pten::CPUContext dev_ctx;
198
  auto dense_out = pten::Multiply<float>(dev_ctx, dense_x, dense_y);
Y
YuanRisheng 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

  // 3. check result
  ASSERT_EQ(dense_out.dims().size(), 2);
  ASSERT_EQ(dense_out.dims()[0], 3);
  ASSERT_EQ(dense_out.dtype(), pten::DataType::FLOAT32);
  ASSERT_EQ(dense_out.layout(), pten::DataLayout::NCHW);

  auto expect_result = mul;
  auto actual_result0 = dense_out.data<float>()[0];
  auto actual_result1 = dense_out.data<float>()[1];
  auto actual_result2 = dense_out.data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
214 215
}  // namespace tests
}  // namespace pten