test_pool3d_api.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18 19 20 21 22
from test_pool3d_op import (
    avg_pool3D_forward_naive,
    max_pool3D_forward_naive,
    pool3D_forward_naive,
)
23

24 25 26 27 28 29
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.nn.functional import avg_pool3d, max_pool3d

30

C
cnn 已提交
31
class TestPool3D_API(unittest.TestCase):
32 33 34 35 36 37 38 39
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
40 41 42
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32"
            )
43 44 45
            result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
46 47 48 49 50 51 52
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg',
            )
53 54

            exe = fluid.Executor(place)
55 56 57 58 59
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": input_np},
                fetch_list=[result],
            )
60
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
61 62 63 64 65 66 67

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(input, kernel_size=2, stride=2, padding="SAME")

68 69 70 71 72 73 74 75
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg',
                padding_algorithm="SAME",
            )
76

77
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
78

79 80 81
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
                kernel_size=2, stride=None, padding="SAME"
            )
82
            result = avg_pool3d_dg(input)
83
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
84

D
Double_V 已提交
85 86 87 88
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=1,
                ceil_mode=False,
                exclusive=True,
            )

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False,
                exclusive=False,
            )
D
Double_V 已提交
106

107
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
108

109 110 111 112 113 114 115
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
                kernel_size=2,
                stride=None,
                padding=1,
                ceil_mode=False,
                exclusive=True,
            )
D
Double_V 已提交
116
            result = avg_pool3d_dg(input)
117
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
118 119 120 121 122

    def check_avg_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
123 124 125 126 127 128 129 130 131 132 133
            result = avg_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True
            )

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True,
            )
D
Double_V 已提交
134

135
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
136

137 138 139
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
                kernel_size=2, stride=None, padding=0, ceil_mode=True
            )
D
Double_V 已提交
140
            result = avg_pool3d_dg(input)
141
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
142

143 144
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
145 146 147
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32"
            )
148 149 150
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
151 152 153 154 155 156 157
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
            )
158 159

            exe = fluid.Executor(place)
160 161 162 163 164
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": input_np},
                fetch_list=[result],
            )
165
            np.testing.assert_allclose(fetches[0], result_np, rtol=1e-05)
166 167 168 169 170 171 172

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

173 174 175 176 177 178 179
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
            )
180

181
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
182 183 184
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
                kernel_size=2, stride=None, padding=0
            )
185
            result = max_pool3d_dg(input)
186
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
187

D
Double_V 已提交
188 189 190 191
    def check_max_dygraph_ndhwc_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                np.transpose(input_np, [0, 2, 3, 4, 1])
            )
            result = max_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=0,
                data_format="NDHWC",
                return_mask=False,
            )

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
            )

            np.testing.assert_allclose(
                np.transpose(result.numpy(), [0, 4, 1, 2, 3]),
                result_np,
                rtol=1e-05,
            )
D
Double_V 已提交
216 217 218 219 220

    def check_max_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
221 222 223 224 225 226 227 228 229 230 231
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True
            )

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True,
            )
D
Double_V 已提交
232

233
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
234

235 236 237
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
                kernel_size=2, stride=None, padding=0, ceil_mode=True
            )
D
Double_V 已提交
238
            result = max_pool3d_dg(input)
239
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
240 241 242 243 244

    def check_max_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
245 246 247 248 249 250 251 252 253 254 255
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False
            )

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False,
            )
D
Double_V 已提交
256

257
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
258

259 260 261
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
                kernel_size=2, stride=None, padding=1, ceil_mode=False
            )
D
Double_V 已提交
262
            result = max_pool3d_dg(input)
263
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
D
Double_V 已提交
264

265 266 267 268
    def check_max_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            result, indices = max_pool3d(
                input,
                kernel_size=2,
                stride=None,
                padding="SAME",
                return_mask=True,
            )

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
                padding_algorithm="SAME",
            )
285

286
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
287 288 289
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
                kernel_size=2, stride=2, padding=0
            )
290
            result = max_pool3d_dg(input)
291
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
292 293 294 295 296 297 298 299

    def check_max_dygraph_padding(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)

300 301 302 303 304 305 306
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
            )
307

308
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
309 310 311
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
                kernel_size=2, stride=2, padding=0
            )
312
            result = max_pool3d_dg(input)
313
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
314 315 316

            padding = [0, 0, 0, 0, 0, 0]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
317
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
318 319 320 321 322 323

    def check_avg_divisor(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = 0
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8,
            )

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg',
            )
339

340
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
341 342 343
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
                kernel_size=2, stride=2, padding=0
            )
344
            result = avg_pool3d_dg(input)
345
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
346 347

            padding = [0, 0, 0, 0, 0, 0]
348 349 350 351 352 353 354
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8,
            )
355
            np.testing.assert_allclose(result.numpy(), result_np, rtol=1e-05)
356 357 358 359 360 361 362 363 364 365 366

    def test_pool3d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_stride_is_none(place)
            self.check_max_dygraph_padding(place)
            self.check_avg_divisor(place)
D
Double_V 已提交
367 368
            self.check_max_dygraph_ndhwc_results(place)
            self.check_max_dygraph_ceilmode_results(place)
369

370
    def test_dygraph_api(self):
F
From00 已提交
371 372 373
        with _test_eager_guard():
            self.test_pool3d()

374

C
cnn 已提交
375
class TestPool3DError_API(unittest.TestCase):
376 377 378
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
379
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
380 381
                    np.float32
                )
382 383
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
384 385 386
                res_pd = avg_pool3d(
                    input_pd, kernel_size=2, stride=2, padding=padding
                )
387 388 389 390 391

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
392
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
393 394
                    np.float32
                )
395 396
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
397 398 399 400 401 402 403
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NCDHW',
                )
404 405 406 407 408

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
409
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
410 411
                    np.float32
                )
412 413
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
414 415 416 417 418 419 420
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NDHWC',
                )
421 422 423 424 425

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
426
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
427 428
                    np.float32
                )
429
                input_pd = fluid.dygraph.to_variable(input_np)
430 431 432 433 434 435 436
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN',
                )
437 438 439 440 441

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
442
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
443 444
                    np.float32
                )
445
                input_pd = fluid.dygraph.to_variable(input_np)
446 447 448 449 450 451 452
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN',
                )
453 454 455 456 457

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
458
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
459 460
                    np.float32
                )
461
                input_pd = fluid.dygraph.to_variable(input_np)
462 463 464 465 466 467 468
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN',
                )
469 470 471 472 473

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
474
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
475 476
                    np.float32
                )
477
                input_pd = fluid.dygraph.to_variable(input_np)
478 479 480 481 482 483 484
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN',
                )
485 486 487 488 489

        self.assertRaises(ValueError, run7)

        def run8():
            with fluid.dygraph.guard():
490
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
491 492
                    np.float32
                )
493
                input_pd = fluid.dygraph.to_variable(input_np)
494 495 496 497 498 499 500 501
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN',
                )
502 503 504 505 506

        self.assertRaises(ValueError, run8)

        def run9():
            with fluid.dygraph.guard():
507
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
508 509
                    np.float32
                )
510
                input_pd = fluid.dygraph.to_variable(input_np)
511 512 513 514 515 516 517 518
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN',
                )
519 520 521

        self.assertRaises(ValueError, run9)

D
Double_V 已提交
522 523
        def run10():
            with fluid.dygraph.guard():
524
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
525 526
                    np.float32
                )
D
Double_V 已提交
527
                input_pd = fluid.dygraph.to_variable(input_np)
528 529 530 531 532 533 534 535
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NDHWC',
                    return_mask=True,
                )
D
Double_V 已提交
536 537 538

        self.assertRaises(ValueError, run10)

D
Double_V 已提交
539 540
        def run_kernel_out_of_range():
            with fluid.dygraph.guard():
541
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
542 543
                    np.float32
                )
D
Double_V 已提交
544
                input_pd = fluid.dygraph.to_variable(input_np)
545 546 547 548 549 550 551
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=-1,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                )
D
Double_V 已提交
552 553 554 555 556

        self.assertRaises(ValueError, run_kernel_out_of_range)

        def run_size_out_of_range():
            with fluid.dygraph.guard():
557
                input_np = np.random.uniform(-1, 1, [2, 3, 32, 32, 32]).astype(
558 559
                    np.float32
                )
D
Double_V 已提交
560
                input_pd = fluid.dygraph.to_variable(input_np)
561 562 563 564 565 566 567
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=0,
                    padding="VALID",
                    ceil_mode=True,
                )
D
Double_V 已提交
568 569 570

        self.assertRaises(ValueError, run_size_out_of_range)

571
    def test_dygraph_api(self):
F
From00 已提交
572 573 574
        with _test_eager_guard():
            self.test_error_api()

575 576 577

if __name__ == '__main__':
    unittest.main()