test_pool3d_api.py 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.nn.functional import avg_pool3d, max_pool3d
D
Double_V 已提交
25
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive, avg_pool3D_forward_naive, max_pool3D_forward_naive
26 27


C
cnn 已提交
28
class TestPool3D_API(unittest.TestCase):
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
            result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(input, kernel_size=2, stride=2, padding="SAME")

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg',
                padding_algorithm="SAME")

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
71
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
72 73 74 75
                kernel_size=2, stride=None, padding="SAME")
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
76 77 78 79 80 81 82 83 84 85
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=1,
                ceil_mode=False,
86
                exclusive=True)
D
Double_V 已提交
87 88 89 90 91 92 93 94 95 96 97

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False,
                exclusive=False)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
98
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
D
Double_V 已提交
99 100 101 102
                kernel_size=2,
                stride=None,
                padding=1,
                ceil_mode=False,
103
                exclusive=True)
D
Double_V 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
123
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
D
Double_V 已提交
124 125 126 127
                kernel_size=2, stride=None, padding=0, ceil_mode=True)
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
162
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
163 164 165 166
                kernel_size=2, stride=None, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
167 168 169 170 171 172 173 174 175 176 177
    def check_max_dygraph_ndhwc_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(
                np.transpose(input_np, [0, 2, 3, 4, 1]))
            result = max_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=0,
                data_format="NDHWC",
178
                return_mask=False)
D
Double_V 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(
                np.allclose(
                    np.transpose(result.numpy(), [0, 4, 1, 2, 3]), result_np))

    def check_max_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
207
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
D
Double_V 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                kernel_size=2, stride=None, padding=0, ceil_mode=True)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
228
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
D
Double_V 已提交
229 230 231 232
                kernel_size=2, stride=None, padding=1, ceil_mode=False)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

233 234 235 236 237 238 239 240 241
    def check_max_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result, indices = max_pool3d(
                input,
                kernel_size=2,
                stride=None,
                padding="SAME",
242
                return_mask=True)
243 244 245 246 247 248 249 250 251 252

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
                padding_algorithm="SAME")

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
253
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
                kernel_size=2, stride=2, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
273
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                kernel_size=2, stride=2, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

            padding = [0, 0, 0, 0, 0, 0]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_divisor(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = 0
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
302
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                kernel_size=2, stride=2, padding=0)
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

            padding = [0, 0, 0, 0, 0, 0]
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def test_pool3d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_stride_is_none(place)
            self.check_max_dygraph_padding(place)
            self.check_avg_divisor(place)
D
Double_V 已提交
326 327
            self.check_max_dygraph_ndhwc_results(place)
            self.check_max_dygraph_ceilmode_results(place)
328 329


C
cnn 已提交
330
class TestPool3DError_API(unittest.TestCase):
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NCDHW')

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NDHWC')

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN')

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN')

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN')

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN')

        self.assertRaises(ValueError, run7)

        def run8():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN')

        self.assertRaises(ValueError, run8)

        def run9():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN')

        self.assertRaises(ValueError, run9)

D
Double_V 已提交
459 460 461 462 463 464 465 466 467 468 469
        def run10():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NDHWC',
470
                    return_mask=True)
D
Double_V 已提交
471 472 473

        self.assertRaises(ValueError, run10)

474 475 476

if __name__ == '__main__':
    unittest.main()