test_pool3d_api.py 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

F
From00 已提交
18
import paddle
19 20
import unittest
import numpy as np
F
From00 已提交
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
from op_test import OpTest
F
From00 已提交
24
from paddle.fluid.framework import _test_eager_guard
25
from paddle.nn.functional import avg_pool3d, max_pool3d
F
From00 已提交
26
from paddle.fluid.framework import _test_eager_guard
D
Double_V 已提交
27
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive, avg_pool3D_forward_naive, max_pool3D_forward_naive
28 29


C
cnn 已提交
30
class TestPool3D_API(unittest.TestCase):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
            result = avg_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(input, kernel_size=2, stride=2, padding="SAME")

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg',
                padding_algorithm="SAME")

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
73
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
74 75 76 77
                kernel_size=2, stride=None, padding="SAME")
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
78 79 80 81 82 83 84 85 86 87
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=1,
                ceil_mode=False,
88
                exclusive=True)
D
Double_V 已提交
89 90 91 92 93 94 95 96 97 98 99

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False,
                exclusive=False)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
100
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
D
Double_V 已提交
101 102 103 104
                kernel_size=2,
                stride=None,
                padding=1,
                ceil_mode=False,
105
                exclusive=True)
D
Double_V 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = avg_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = avg_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
125
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
D
Double_V 已提交
126 127 128 129
                kernel_size=2, stride=None, padding=0, ceil_mode=True)
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 32, 32, 32], dtype="float32")
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(input, kernel_size=2, stride=2, padding=0)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
164
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
165 166 167 168
                kernel_size=2, stride=None, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
169 170 171 172 173 174 175 176 177 178 179
    def check_max_dygraph_ndhwc_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(
                np.transpose(input_np, [0, 2, 3, 4, 1]))
            result = max_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=0,
                data_format="NDHWC",
180
                return_mask=False)
D
Double_V 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(
                np.allclose(
                    np.transpose(result.numpy(), [0, 4, 1, 2, 3]), result_np))

    def check_max_dygraph_ceilmode_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=0, ceil_mode=True)

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                ceil_mode=True)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
209
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
D
Double_V 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                kernel_size=2, stride=None, padding=0, ceil_mode=True)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = max_pool3d(
                input, kernel_size=2, stride=2, padding=1, ceil_mode=False)

            result_np = max_pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[1, 1, 1],
                ceil_mode=False)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
230
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
D
Double_V 已提交
231 232 233 234
                kernel_size=2, stride=None, padding=1, ceil_mode=False)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

235 236 237 238 239 240 241 242 243
    def check_max_dygraph_stride_is_none(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result, indices = max_pool3d(
                input,
                kernel_size=2,
                stride=None,
                padding="SAME",
244
                return_mask=True)
245 246 247 248 249 250 251 252 253 254

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max',
                padding_algorithm="SAME")

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
255
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                kernel_size=2, stride=2, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_max_dygraph_padding(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='max')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
275
            max_pool3d_dg = paddle.nn.layer.MaxPool3D(
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                kernel_size=2, stride=2, padding=0)
            result = max_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

            padding = [0, 0, 0, 0, 0, 0]
            result = max_pool3d(input, kernel_size=2, stride=2, padding=padding)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_divisor(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            padding = 0
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8)

            result_np = pool3D_forward_naive(
                input_np,
                ksize=[2, 2, 2],
                strides=[2, 2, 2],
                paddings=[0, 0, 0],
                pool_type='avg')

            self.assertTrue(np.allclose(result.numpy(), result_np))
C
cnn 已提交
304
            avg_pool3d_dg = paddle.nn.layer.AvgPool3D(
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                kernel_size=2, stride=2, padding=0)
            result = avg_pool3d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

            padding = [0, 0, 0, 0, 0, 0]
            result = avg_pool3d(
                input,
                kernel_size=2,
                stride=2,
                padding=padding,
                divisor_override=8)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def test_pool3d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_stride_is_none(place)
            self.check_max_dygraph_padding(place)
            self.check_avg_divisor(place)
D
Double_V 已提交
328 329
            self.check_max_dygraph_ndhwc_results(place)
            self.check_max_dygraph_ceilmode_results(place)
330

F
From00 已提交
331 332 333 334
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_pool3d()

335

C
cnn 已提交
336
class TestPool3DError_API(unittest.TestCase):
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NCDHW')

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    data_format='NDHWC')

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN')

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NNNN')

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN')

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="padding",
                    data_format='NNNN')

        self.assertRaises(ValueError, run7)

        def run8():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN')

        self.assertRaises(ValueError, run8)

        def run9():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True,
                    data_format='NNNN')

        self.assertRaises(ValueError, run9)

D
Double_V 已提交
465 466 467 468 469 470 471 472 473 474 475
        def run10():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = max_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=0,
                    data_format='NDHWC',
476
                    return_mask=True)
D
Double_V 已提交
477 478 479

        self.assertRaises(ValueError, run10)

D
Double_V 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        def run_kernel_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=-1,
                    stride=2,
                    padding="VALID",
                    ceil_mode=True)

        self.assertRaises(ValueError, run_kernel_out_of_range)

        def run_size_out_of_range():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(
                    -1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                res_pd = avg_pool3d(
                    input_pd,
                    kernel_size=2,
                    stride=0,
                    padding="VALID",
                    ceil_mode=True)

        self.assertRaises(ValueError, run_size_out_of_range)

F
From00 已提交
508 509 510 511
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_error_api()

512 513 514

if __name__ == '__main__':
    unittest.main()