pool_op_plugin.h 9.1 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <stdio.h>
N
nhzlx 已提交
17
#include <cassert>
18
#include <string>
N
nhzlx 已提交
19 20 21 22 23 24
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
25
namespace plugin {
N
nhzlx 已提交
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
                                       const bool& ceil_mode,
                                       const bool& adaptive,
                                       const std::vector<int>& ksize,
                                       const std::vector<int>& strides,
                                       const std::vector<int>& paddings) {
  std::vector<int> output_shape = input_shape;
  if (adaptive) {
    output_shape[0] = ksize[0];
    output_shape[1] = ksize[1];
  } else {
    int output_h, output_w;
    if (!ceil_mode) {
      output_h = (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
      output_w = (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
    } else {
      output_h =
          (input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
              strides[0] +
          1;
      output_w =
          (input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
              strides[1] +
          1;
    }
    output_shape[0] = output_h;
    output_shape[1] = output_w;
  }
  return output_shape;
}

58
class PoolPlugin : public PluginTensorRT {
59
 public:
60
  size_t getSerializationSize() const TRT_NOEXCEPT override {
61
    return getBaseSerializationSize() + SerializedSize(ceil_mode_) +
62
           SerializedSize(pool_type_) + SerializedSize(adaptive_) +
N
nhzlx 已提交
63 64
           SerializedSize(ksize_) + SerializedSize(strides_) +
           SerializedSize(paddings_) + SerializedSize(input_shape_) +
65
           SerializedSize(output_shape_);
N
nhzlx 已提交
66 67 68 69
  }

  // TRT will call this func when we need to serialize the configuration of
  // tensorrt.
70
  void serialize(void* buffer) const TRT_NOEXCEPT override {
N
nhzlx 已提交
71 72
    serializeBase(buffer);
    SerializeValue(&buffer, ceil_mode_);
73 74
    SerializeValue(&buffer, pool_type_);
    SerializeValue(&buffer, adaptive_);
N
nhzlx 已提交
75 76 77 78
    SerializeValue(&buffer, ksize_);
    SerializeValue(&buffer, strides_);
    SerializeValue(&buffer, paddings_);
    SerializeValue(&buffer, input_shape_);
N
nhzlx 已提交
79
    SerializeValue(&buffer, output_shape_);
N
nhzlx 已提交
80 81
  }

82 83 84 85 86 87 88 89
  enum class PoolType {
    max = 0,
    avg,
  };
  PoolPlugin() {}
  PoolPlugin(bool ceil_mode, PoolType pool_type, bool adaptive,
             std::vector<int> ksize, std::vector<int> strides,
             std::vector<int> paddings, std::vector<int> input_shape)
N
nhzlx 已提交
90
      : ceil_mode_(ceil_mode),
91 92
        pool_type_(pool_type),
        adaptive_(adaptive),
N
nhzlx 已提交
93 94 95 96 97
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        input_shape_(input_shape) {
    output_shape_ = input_shape_;
98 99 100 101 102
    std::vector<int> output_shape =
        CalcOutputSize({input_shape_[1], input_shape_[2]}, ceil_mode_,
                       adaptive_, ksize_, strides_, paddings_);
    output_shape_[1] = output_shape[0];
    output_shape_[2] = output_shape[1];
N
nhzlx 已提交
103 104 105 106
  }

  // It was used for tensorrt deserialization.
  // It should not be called by users.
107
  PoolPlugin(void const* serialData, size_t serialLength) {
N
nhzlx 已提交
108 109
    deserializeBase(serialData, serialLength);
    DeserializeValue(&serialData, &serialLength, &ceil_mode_);
110 111
    DeserializeValue(&serialData, &serialLength, &pool_type_);
    DeserializeValue(&serialData, &serialLength, &adaptive_);
N
nhzlx 已提交
112 113 114 115
    DeserializeValue(&serialData, &serialLength, &ksize_);
    DeserializeValue(&serialData, &serialLength, &strides_);
    DeserializeValue(&serialData, &serialLength, &paddings_);
    DeserializeValue(&serialData, &serialLength, &input_shape_);
N
nhzlx 已提交
116
    DeserializeValue(&serialData, &serialLength, &output_shape_);
N
nhzlx 已提交
117 118
  }

119
  PoolPlugin* clone() const TRT_NOEXCEPT override {
120 121
    return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, ksize_, strides_,
                          paddings_, input_shape_);
N
nhzlx 已提交
122 123
  }

124 125 126 127
  const char* getPluginType() const TRT_NOEXCEPT override {
    return "pool_plugin";
  }
  int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
128
  nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
129 130
                                     int nbInputDims) TRT_NOEXCEPT override;
  int initialize() TRT_NOEXCEPT override { return 0; }
131
#if IS_TRT_VERSION_LT(8000)
132
  int enqueue(int batchSize, const void* const* inputs, void** outputs,
133 134 135
#else
  int enqueue(int batchSize, const void* const* inputs, void* const* outputs,
#endif
136
              void* workspace, cudaStream_t stream) TRT_NOEXCEPT override;
137 138 139 140 141 142 143 144 145 146

 private:
  bool ceil_mode_;
  PoolType pool_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::vector<int> input_shape_;
  std::vector<int> output_shape_;
N
nhzlx 已提交
147 148
};

149 150
class PoolPluginCreator : public TensorRTPluginCreator {
 public:
151 152 153
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "pool_plugin";
  }
154

155
  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
156

157 158 159
  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
160 161 162 163 164
    return new PoolPlugin(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PoolPluginCreator);

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#if IS_TRT_VERSION_GE(6000)
class PoolPluginDynamic : public DynamicPluginTensorRT {
 public:
  PoolPluginDynamic() {}
  PoolPluginDynamic(const bool& ceil_mode, const std::string& pool_type,
                    const bool& adaptive, const std::vector<int>& ksize,
                    const std::vector<int>& strides,
                    const std::vector<int>& paddings, const bool& is_global)
      : ceil_mode_(ceil_mode),
        pool_type_(pool_type),
        adaptive_(adaptive),
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        is_global_(is_global) {}

181
  PoolPluginDynamic(void const* serialData, size_t serialLength);
182
  ~PoolPluginDynamic() {}
183
  nvinfer1::IPluginV2DynamicExt* clone() const TRT_NOEXCEPT override {
184 185 186 187
    return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, ksize_,
                                 strides_, paddings_, is_global_);
  }

188 189 190 191 192
  const char* getPluginType() const TRT_NOEXCEPT override {
    return "pool_plugin_dynamic";
  }
  int getNbOutputs() const TRT_NOEXCEPT override { return 1; }
  int initialize() TRT_NOEXCEPT override { return 0; }
193

194 195
  size_t getSerializationSize() const TRT_NOEXCEPT override;
  void serialize(void* buffer) const TRT_NOEXCEPT override;
196 197 198

  nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
199
      nvinfer1::IExprBuilder& expr_builder) TRT_NOEXCEPT override;
200 201 202

  bool supportsFormatCombination(int pos,
                                 const nvinfer1::PluginTensorDesc* inOut,
203 204
                                 int nbInputs,
                                 int nbOutputs) TRT_NOEXCEPT override;
205 206 207 208

  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                       int nbInputs,
                       const nvinfer1::DynamicPluginTensorDesc* out,
209
                       int nbOutputs) TRT_NOEXCEPT override {}
210 211 212 213

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nbInputs,
                          const nvinfer1::PluginTensorDesc* outputs,
214
                          int nbOutputs) const TRT_NOEXCEPT override {
215 216 217 218 219 220
    return 0;
  }

  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
              const nvinfer1::PluginTensorDesc* outputDesc,
              const void* const* inputs, void* const* outputs, void* workspace,
221 222 223 224
              cudaStream_t stream) TRT_NOEXCEPT override;
  nvinfer1::DataType getOutputDataType(
      int index, const nvinfer1::DataType* inputTypes,
      int nbInputs) const TRT_NOEXCEPT override;
225

226
  void destroy() TRT_NOEXCEPT override { delete this; }
227 228 229 230 231 232 233 234 235 236

 private:
  bool ceil_mode_;
  std::string pool_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  bool is_global_;
};
237 238 239

class PoolPluginDynamicCreator : public TensorRTPluginCreator {
 public:
240 241 242
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "pool_plugin_dynamic";
  }
243

244
  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }
245

246 247 248
  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
249 250 251 252
    return new PoolPluginDynamic(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PoolPluginDynamicCreator);
253 254
#endif

N
nhzlx 已提交
255
}  // namespace plugin
N
nhzlx 已提交
256 257 258
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle