// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h" namespace paddle { namespace inference { namespace tensorrt { namespace plugin { static std::vector CalcOutputSize(const std::vector& input_shape, const bool& ceil_mode, const bool& adaptive, const std::vector& ksize, const std::vector& strides, const std::vector& paddings) { std::vector output_shape = input_shape; if (adaptive) { output_shape[0] = ksize[0]; output_shape[1] = ksize[1]; } else { int output_h, output_w; if (!ceil_mode) { output_h = (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1; output_w = (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1; } else { output_h = (input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) / strides[0] + 1; output_w = (input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] + 1; } output_shape[0] = output_h; output_shape[1] = output_w; } return output_shape; } class PoolPlugin : public PluginTensorRT { public: size_t getSerializationSize() const TRT_NOEXCEPT override { return getBaseSerializationSize() + SerializedSize(ceil_mode_) + SerializedSize(pool_type_) + SerializedSize(adaptive_) + SerializedSize(ksize_) + SerializedSize(strides_) + SerializedSize(paddings_) + SerializedSize(input_shape_) + SerializedSize(output_shape_); } // TRT will call this func when we need to serialize the configuration of // tensorrt. void serialize(void* buffer) const TRT_NOEXCEPT override { serializeBase(buffer); SerializeValue(&buffer, ceil_mode_); SerializeValue(&buffer, pool_type_); SerializeValue(&buffer, adaptive_); SerializeValue(&buffer, ksize_); SerializeValue(&buffer, strides_); SerializeValue(&buffer, paddings_); SerializeValue(&buffer, input_shape_); SerializeValue(&buffer, output_shape_); } enum class PoolType { max = 0, avg, }; PoolPlugin() {} PoolPlugin(bool ceil_mode, PoolType pool_type, bool adaptive, std::vector ksize, std::vector strides, std::vector paddings, std::vector input_shape) : ceil_mode_(ceil_mode), pool_type_(pool_type), adaptive_(adaptive), ksize_(ksize), strides_(strides), paddings_(paddings), input_shape_(input_shape) { output_shape_ = input_shape_; std::vector output_shape = CalcOutputSize({input_shape_[1], input_shape_[2]}, ceil_mode_, adaptive_, ksize_, strides_, paddings_); output_shape_[1] = output_shape[0]; output_shape_[2] = output_shape[1]; } // It was used for tensorrt deserialization. // It should not be called by users. PoolPlugin(void const* serialData, size_t serialLength) { deserializeBase(serialData, serialLength); DeserializeValue(&serialData, &serialLength, &ceil_mode_); DeserializeValue(&serialData, &serialLength, &pool_type_); DeserializeValue(&serialData, &serialLength, &adaptive_); DeserializeValue(&serialData, &serialLength, &ksize_); DeserializeValue(&serialData, &serialLength, &strides_); DeserializeValue(&serialData, &serialLength, &paddings_); DeserializeValue(&serialData, &serialLength, &input_shape_); DeserializeValue(&serialData, &serialLength, &output_shape_); } PoolPlugin* clone() const TRT_NOEXCEPT override { return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, ksize_, strides_, paddings_, input_shape_); } const char* getPluginType() const TRT_NOEXCEPT override { return "pool_plugin"; } int getNbOutputs() const TRT_NOEXCEPT override { return 1; } nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) TRT_NOEXCEPT override; int initialize() TRT_NOEXCEPT override { return 0; } #if IS_TRT_VERSION_LT(8000) int enqueue(int batchSize, const void* const* inputs, void** outputs, #else int enqueue(int batchSize, const void* const* inputs, void* const* outputs, #endif void* workspace, cudaStream_t stream) TRT_NOEXCEPT override; private: bool ceil_mode_; PoolType pool_type_; bool adaptive_; std::vector ksize_; std::vector strides_; std::vector paddings_; std::vector input_shape_; std::vector output_shape_; }; class PoolPluginCreator : public TensorRTPluginCreator { public: const char* getPluginName() const TRT_NOEXCEPT override { return "pool_plugin"; } const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; } nvinfer1::IPluginV2* deserializePlugin( const char* name, const void* serial_data, size_t serial_length) TRT_NOEXCEPT override { return new PoolPlugin(serial_data, serial_length); } }; REGISTER_TRT_PLUGIN_V2(PoolPluginCreator); #if IS_TRT_VERSION_GE(6000) class PoolPluginDynamic : public DynamicPluginTensorRT { public: PoolPluginDynamic() {} PoolPluginDynamic(const bool& ceil_mode, const std::string& pool_type, const bool& adaptive, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const bool& is_global) : ceil_mode_(ceil_mode), pool_type_(pool_type), adaptive_(adaptive), ksize_(ksize), strides_(strides), paddings_(paddings), is_global_(is_global) {} PoolPluginDynamic(void const* serialData, size_t serialLength); ~PoolPluginDynamic() {} nvinfer1::IPluginV2DynamicExt* clone() const TRT_NOEXCEPT override { return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, ksize_, strides_, paddings_, is_global_); } const char* getPluginType() const TRT_NOEXCEPT override { return "pool_plugin_dynamic"; } int getNbOutputs() const TRT_NOEXCEPT override { return 1; } int initialize() TRT_NOEXCEPT override { return 0; } size_t getSerializationSize() const TRT_NOEXCEPT override; void serialize(void* buffer) const TRT_NOEXCEPT override; nvinfer1::DimsExprs getOutputDimensions( int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs, nvinfer1::IExprBuilder& expr_builder) TRT_NOEXCEPT override; bool supportsFormatCombination(int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) TRT_NOEXCEPT override; void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs, const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) TRT_NOEXCEPT override {} size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs, const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const TRT_NOEXCEPT override { return 0; } int enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc, const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) TRT_NOEXCEPT override; nvinfer1::DataType getOutputDataType( int index, const nvinfer1::DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT override; void destroy() TRT_NOEXCEPT override { delete this; } private: bool ceil_mode_; std::string pool_type_; bool adaptive_; std::vector ksize_; std::vector strides_; std::vector paddings_; bool is_global_; }; class PoolPluginDynamicCreator : public TensorRTPluginCreator { public: const char* getPluginName() const TRT_NOEXCEPT override { return "pool_plugin_dynamic"; } const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; } nvinfer1::IPluginV2* deserializePlugin( const char* name, const void* serial_data, size_t serial_length) TRT_NOEXCEPT override { return new PoolPluginDynamic(serial_data, serial_length); } }; REGISTER_TRT_PLUGIN_V2(PoolPluginDynamicCreator); #endif } // namespace plugin } // namespace tensorrt } // namespace inference } // namespace paddle