pool_op_plugin.h 8.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <stdio.h>
N
nhzlx 已提交
17
#include <cassert>
18
#include <string>
N
nhzlx 已提交
19 20 21 22 23 24
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
25
namespace plugin {
N
nhzlx 已提交
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
                                       const bool& ceil_mode,
                                       const bool& adaptive,
                                       const std::vector<int>& ksize,
                                       const std::vector<int>& strides,
                                       const std::vector<int>& paddings) {
  std::vector<int> output_shape = input_shape;
  if (adaptive) {
    output_shape[0] = ksize[0];
    output_shape[1] = ksize[1];
  } else {
    int output_h, output_w;
    if (!ceil_mode) {
      output_h = (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
      output_w = (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
    } else {
      output_h =
          (input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
              strides[0] +
          1;
      output_w =
          (input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
              strides[1] +
          1;
    }
    output_shape[0] = output_h;
    output_shape[1] = output_w;
  }
  return output_shape;
}

58
class PoolPlugin : public PluginTensorRT {
59 60 61
 public:
  size_t getSerializationSize() const override {
    return getBaseSerializationSize() + SerializedSize(ceil_mode_) +
62
           SerializedSize(pool_type_) + SerializedSize(adaptive_) +
N
nhzlx 已提交
63 64
           SerializedSize(ksize_) + SerializedSize(strides_) +
           SerializedSize(paddings_) + SerializedSize(input_shape_) +
65
           SerializedSize(output_shape_);
N
nhzlx 已提交
66 67 68 69
  }

  // TRT will call this func when we need to serialize the configuration of
  // tensorrt.
70
  void serialize(void* buffer) const override {
N
nhzlx 已提交
71 72
    serializeBase(buffer);
    SerializeValue(&buffer, ceil_mode_);
73 74
    SerializeValue(&buffer, pool_type_);
    SerializeValue(&buffer, adaptive_);
N
nhzlx 已提交
75 76 77 78
    SerializeValue(&buffer, ksize_);
    SerializeValue(&buffer, strides_);
    SerializeValue(&buffer, paddings_);
    SerializeValue(&buffer, input_shape_);
N
nhzlx 已提交
79
    SerializeValue(&buffer, output_shape_);
N
nhzlx 已提交
80 81
  }

82 83 84 85 86 87 88 89
  enum class PoolType {
    max = 0,
    avg,
  };
  PoolPlugin() {}
  PoolPlugin(bool ceil_mode, PoolType pool_type, bool adaptive,
             std::vector<int> ksize, std::vector<int> strides,
             std::vector<int> paddings, std::vector<int> input_shape)
N
nhzlx 已提交
90
      : ceil_mode_(ceil_mode),
91 92
        pool_type_(pool_type),
        adaptive_(adaptive),
N
nhzlx 已提交
93 94 95 96 97
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        input_shape_(input_shape) {
    output_shape_ = input_shape_;
98 99 100 101 102
    std::vector<int> output_shape =
        CalcOutputSize({input_shape_[1], input_shape_[2]}, ceil_mode_,
                       adaptive_, ksize_, strides_, paddings_);
    output_shape_[1] = output_shape[0];
    output_shape_[2] = output_shape[1];
N
nhzlx 已提交
103 104 105 106
  }

  // It was used for tensorrt deserialization.
  // It should not be called by users.
107
  PoolPlugin(void const* serialData, size_t serialLength) {
N
nhzlx 已提交
108 109
    deserializeBase(serialData, serialLength);
    DeserializeValue(&serialData, &serialLength, &ceil_mode_);
110 111
    DeserializeValue(&serialData, &serialLength, &pool_type_);
    DeserializeValue(&serialData, &serialLength, &adaptive_);
N
nhzlx 已提交
112 113 114 115
    DeserializeValue(&serialData, &serialLength, &ksize_);
    DeserializeValue(&serialData, &serialLength, &strides_);
    DeserializeValue(&serialData, &serialLength, &paddings_);
    DeserializeValue(&serialData, &serialLength, &input_shape_);
N
nhzlx 已提交
116
    DeserializeValue(&serialData, &serialLength, &output_shape_);
N
nhzlx 已提交
117 118
  }

119
  PoolPlugin* clone() const override {
120 121
    return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, ksize_, strides_,
                          paddings_, input_shape_);
N
nhzlx 已提交
122 123
  }

124
  const char* getPluginType() const override { return "pool_plugin"; }
N
nhzlx 已提交
125
  int getNbOutputs() const override { return 1; }
126
  nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
N
nhzlx 已提交
127 128
                                     int nbInputDims) override;
  int initialize() override { return 0; }
129
#if IS_TRT_VERSION_LT(8000)
130
  int enqueue(int batchSize, const void* const* inputs, void** outputs,
131 132 133
#else
  int enqueue(int batchSize, const void* const* inputs, void* const* outputs,
#endif
134
              void* workspace, cudaStream_t stream) override;
135 136 137 138 139 140 141 142 143 144

 private:
  bool ceil_mode_;
  PoolType pool_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::vector<int> input_shape_;
  std::vector<int> output_shape_;
N
nhzlx 已提交
145 146
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160
class PoolPluginCreator : public TensorRTPluginCreator {
 public:
  const char* getPluginName() const override { return "pool_plugin"; }

  const char* getPluginVersion() const override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(const char* name,
                                         const void* serial_data,
                                         size_t serial_length) override {
    return new PoolPlugin(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PoolPluginCreator);

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#if IS_TRT_VERSION_GE(6000)
class PoolPluginDynamic : public DynamicPluginTensorRT {
 public:
  PoolPluginDynamic() {}
  PoolPluginDynamic(const bool& ceil_mode, const std::string& pool_type,
                    const bool& adaptive, const std::vector<int>& ksize,
                    const std::vector<int>& strides,
                    const std::vector<int>& paddings, const bool& is_global)
      : ceil_mode_(ceil_mode),
        pool_type_(pool_type),
        adaptive_(adaptive),
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        is_global_(is_global) {}

177
  PoolPluginDynamic(void const* serialData, size_t serialLength);
178 179 180 181 182 183
  ~PoolPluginDynamic() {}
  nvinfer1::IPluginV2DynamicExt* clone() const override {
    return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, ksize_,
                                 strides_, paddings_, is_global_);
  }

184
  const char* getPluginType() const override { return "pool_plugin_dynamic"; }
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  int getNbOutputs() const override { return 1; }
  int initialize() override { return 0; }

  size_t getSerializationSize() const override;
  void serialize(void* buffer) const override;

  nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
      nvinfer1::IExprBuilder& expr_builder) override;

  bool supportsFormatCombination(int pos,
                                 const nvinfer1::PluginTensorDesc* inOut,
                                 int nbInputs, int nbOutputs) override;

  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                       int nbInputs,
                       const nvinfer1::DynamicPluginTensorDesc* out,
                       int nbOutputs) override {}

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nbInputs,
                          const nvinfer1::PluginTensorDesc* outputs,
                          int nbOutputs) const override {
    return 0;
  }

  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
              const nvinfer1::PluginTensorDesc* outputDesc,
              const void* const* inputs, void* const* outputs, void* workspace,
              cudaStream_t stream) override;
  nvinfer1::DataType getOutputDataType(int index,
                                       const nvinfer1::DataType* inputTypes,
                                       int nbInputs) const override;

  void destroy() override { delete this; }

 private:
  bool ceil_mode_;
  std::string pool_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  bool is_global_;
};
230 231 232 233 234 235 236 237 238 239 240 241 242 243

class PoolPluginDynamicCreator : public TensorRTPluginCreator {
 public:
  const char* getPluginName() const override { return "pool_plugin_dynamic"; }

  const char* getPluginVersion() const override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(const char* name,
                                         const void* serial_data,
                                         size_t serial_length) override {
    return new PoolPluginDynamic(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(PoolPluginDynamicCreator);
244 245
#endif

N
nhzlx 已提交
246
}  // namespace plugin
N
nhzlx 已提交
247 248 249
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle