ipu_executor.cc 16.9 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

17 18 19 20
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
J
jianghaicheng 已提交
21 22 23 24 25

namespace paddle {
namespace platform {
namespace ipu {

26 27
namespace {

A
Allen Guo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Get paddle prefix and popart postfix of weight states
// Format: {popart_postfix, paddle_prefix}
std::vector<std::pair<std::string, std::string>> GetOptPrePostfix(
    const std::string &opt_type) {
  std::vector<std::pair<std::string, std::string>> pre_post_fix;
  // Weight self
  pre_post_fix.push_back(std::make_pair("", ""));

  // Weight states
  // TODO(alleng) support pair("Accl1___", "_moment1_{id!=0}")
  if (opt_type == "adam" || opt_type == "lamb" || opt_type == "adamw") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment1_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_moment2_0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "momentum") {
    pre_post_fix.push_back(std::make_pair("Accl___", "_velocity_0"));
  } else if (opt_type == "adamax") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_inf_norm__0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "adagrad") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
  } else if (opt_type == "adadelta") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "__avg_squared_grad_0"));
    pre_post_fix.push_back(
        std::make_pair("Accl2___", "__avg_squared_update_0"));
  } else if (opt_type == "rmsprop") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_mean_square_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_mean_grad_0"));
    pre_post_fix.push_back(std::make_pair("Accl3___", "_momentum__0"));
  }
  return pre_post_fix;
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class PdIArray final : public popart::IArray {
 public:
  explicit PdIArray(const Tensor *tensor) {
    tensor_.ShareDataWith(*tensor);
    for (int i = 0; i < tensor->dims().size(); ++i) {
      shape_.push_back(tensor->dims().at(i));
    }
  }

 public:
  void *data() { return tensor_.data(); }
  popart::DataType dataType() const {
    return PhiDType2PopartDType(tensor_.dtype());
  }
  std::size_t rank() const { return tensor_.dims().size(); }
  int64_t dim(size_t index) const { return tensor_.dims().at(index); }
  std::size_t nelms() const {
79 80 81 82
    return std::accumulate(shape_.begin(),
                           shape_.end(),
                           static_cast<int64_t>(1),
                           std::multiplies<int64_t>());
83 84 85 86 87 88 89 90 91 92
  }
  const popart::Shape shape() const { return shape_; }

 private:
  Tensor tensor_;
  std::vector<int64_t> shape_;
};

}  // namespace

A
Allen Guo 已提交
93
Executor::~Executor() { Reset(); }
94 95 96

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
A
Allen Guo 已提交
97
  compile_only_ = GetBoolEnv("IPU_COMPILE_ONLY");
J
jianghaicheng 已提交
98

99 100
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
101 102 103

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
104
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
105 106 107 108
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

109
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
110
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
111
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
112
    session_ = popart::TrainingSession::createFromOnnxModel(
113 114 115 116 117 118 119
        proto,
        dataFlow,
        compiler_resources_->loss_var,
        *optimizer,
        device_,
        popart::InputShapeInfo(),
        ipu_strategy_->popart_options,
120
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
121 122 123
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
124 125 126 127 128 129
        proto,
        dataFlow,
        device_,
        popart::InputShapeInfo(),
        ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
130 131 132
  }
  VLOG(10) << "Creating session from Onnx Model...done";

A
Allen Guo 已提交
133 134 135 136 137 138 139 140 141 142 143 144
  if (compile_only_) {
    LOG(INFO)
        << "Save the offline cache as offline_cache.popart in current path.";
    VLOG(10) << "Compile only...";
    session_->compileAndExport("./offline_cache.popart");
    VLOG(10) << "Compile only...done";
    return;
  } else {
    VLOG(10) << "Preparing session device...";
    session_->prepareDevice();
    VLOG(10) << "Preparing session device...done";
  }
J
jianghaicheng 已提交
145 146 147 148 149 150 151

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

A
Allen Guo 已提交
152 153 154
  if (ipu_strategy_->random_seed != std::numeric_limits<std::uint64_t>::max()) {
    VLOG(10) << "Setting random seed to: " << ipu_strategy_->random_seed;
    session_->setRandomSeed(ipu_strategy_->random_seed);
J
jianghaicheng 已提交
155 156 157
  }
}

158 159
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
160
                   const framework::ExecutionContext &ctx) {
A
Allen Guo 已提交
161 162 163 164 165
  if (compile_only_) {
    LOG(INFO) << "If IPU_COMPILE_ONLY=True, skip exe.run";
    return;
  }

166
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
167 168
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
169
  std::map<popart::TensorId, PdIArray> input_wrappers;
J
jianghaicheng 已提交
170
  for (size_t i = 0; i < inputs.size(); i++) {
171
    auto tensor_id = compiler_resources_->inputs[i];
172
    input_wrappers.emplace(tensor_id, PdIArray(inputs[i]));
J
jianghaicheng 已提交
173 174 175 176
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
177
  std::map<popart::TensorId, PdIArray> anchor_wrappers;
J
jianghaicheng 已提交
178
  for (size_t i = 0; i < outputs.size(); i++) {
179
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
180 181 182 183 184 185 186
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
187 188 189 190 191 192 193 194 195 196
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
197
    tensor->Resize(phi::make_ddim(output_shape));
J
jianghaicheng 已提交
198
    auto fetch_dtype = fetch_info.dataType();
199
    auto paddle_type = PopartDType2VarType(fetch_dtype);
200
    tensor->mutable_data(ctx.GetPlace(),
201
                         framework::TransToPhiDataType(paddle_type));
202
    anchor_wrappers.emplace(tensor_id, PdIArray(tensor));
J
jianghaicheng 已提交
203 204
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
205 206
  VLOG(10) << "Prepared inputs/anchors";

207 208 209
  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched &&
      !(ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
        ipu_strategy_->runtime_options.enable_eval)) {
A
Allen Guo 已提交
210 211 212 213 214 215 216 217 218 219 220
    popart::Optimizer *optimizer;
    if (ipu_strategy_->runtime_options.enable_eval) {
      VLOG(10) << "Switch optimizer to eval mode";
      optimizer = compiler_resources_->eval_optimizer.get();
    } else {
      VLOG(10) << "Update learning_rate";
      auto new_lr =
          GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
      VLOG(10) << "New Lr: " << new_lr;
      optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    }
221 222
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
223 224 225 226
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
227 228 229 230 231 232
  if (ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
      ipu_strategy_->runtime_options.enable_eval) {
    session_->run("implicitPipeliningFwdOnly", stepio);
  } else {
    session_->run(stepio);
  }
J
jianghaicheng 已提交
233
  VLOG(10) << "Running...done";
A
Allen Guo 已提交
234
}
J
jianghaicheng 已提交
235

A
Allen Guo 已提交
236 237
void Executor::WeightsToHost() {
  if (ipu_strategy_->is_training && session_) {
J
jianghaicheng 已提交
238
    WeightsToPaddle();
A
Allen Guo 已提交
239 240
  } else {
    LOG(WARNING) << "For a non-trainning graph, cannot sync weights from IPU.";
J
jianghaicheng 已提交
241 242 243
  }
}

244 245 246 247 248 249
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
250

251
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
A
Allen Guo 已提交
252
  bool enable_distribution = ipu_strategy_->enable_distribution;
253
  if (use_ipu_model) {
A
Allen Guo 已提交
254
    VLOG(10) << "Create IPU model device...";
A
Allen Guo 已提交
255 256
    std::map<std::string, std::string> deviceOpts{
        {
257 258
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
259
        },
260
        {"tilesPerIPU", std::to_string(ipu_strategy_->tiles_per_ipu)},
A
Allen Guo 已提交
261 262
        {"ipuVersion", "ipu2"},
    };
263 264
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
A
Allen Guo 已提交
265 266 267 268 269
    VLOG(10) << "Create IPU model device...done";
  } else if (compile_only_) {
    VLOG(10) << "Create offline device...";
    std::map<std::string, std::string> deviceOpts{
        {
270 271
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
272
        },
273
        {"tilesPerIPU", std::to_string(ipu_strategy_->tiles_per_ipu)},
A
Allen Guo 已提交
274 275 276 277 278 279
        {"ipuVersion", "ipu2"},
    };
    device_ =
        popart::DeviceManager::createDeviceManager().createOfflineIPUDevice(
            deviceOpts);
    VLOG(10) << "Create offline device...done";
A
Allen Guo 已提交
280
  } else if (enable_distribution) {
A
Allen Guo 已提交
281
    VLOG(10) << "Create distribution device...";
A
Allen Guo 已提交
282 283 284 285 286 287
    auto ipus_per_replica = ipu_strategy_->num_ipus /
                            ipu_strategy_->popart_options.replicatedGraphCount;
    auto device_id = popdist_get_device(ipus_per_replica);
    device_ = popart::DeviceManager::createDeviceManager().acquireDeviceById(
        device_id);
    PADDLE_ENFORCE_NOT_NULL(
288 289 290
        device_,
        errors::Unavailable("Can't attach IPU in distribution, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
291
    VLOG(10) << "Create distribution device...done";
292
  } else {
A
Allen Guo 已提交
293
    VLOG(10) << "Create IPU device...";
294 295 296
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
297
    PADDLE_ENFORCE_NOT_NULL(
298 299 300
        device_,
        errors::Unavailable("Can't attach IPU, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
301
    VLOG(10) << "Create IPU device...done";
302 303
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
304 305
}

306 307 308 309 310 311
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
312 313
}

A
Allen Guo 已提交
314 315 316 317 318 319
void Executor::Reset() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

J
jianghaicheng 已提交
320
void Executor::SetWeightsIO() {
321 322
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
323
  auto pre_post_fix = GetOptPrePostfix(opt_type);
A
Allen Guo 已提交
324
  for (const auto &weight_pd : compiler_resources_->weights) {
J
jianghaicheng 已提交
325 326
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
A
Allen Guo 已提交
327 328 329
      auto weight_pop = compiler_resources_->tensors[weight_pd];
      auto popart_var = pair.first + weight_pop;
      auto paddle_var = weight_pd + pair.second;
J
jianghaicheng 已提交
330

A
Allen Guo 已提交
331
      if (scope_->FindVar(paddle_var) == nullptr) {
J
jianghaicheng 已提交
332 333
        continue;
      }
A
Allen Guo 已提交
334
      if (!session_->hasInfo(popart_var)) {
335 336 337
        continue;
      }

A
Allen Guo 已提交
338 339 340
      VLOG(10) << "Connect paddle weight: " << paddle_var
               << " with popart weight: " << popart_var;
      auto var = scope_->GetVar(paddle_var);
341
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
A
Allen Guo 已提交
342 343
      auto tensor_info = session_->getInfo(popart_var);
      executor_resources_->weights_io.insert(popart_var,
344 345
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
A
Allen Guo 已提交
346
          std::make_pair(popart_var, paddle_var));
J
jianghaicheng 已提交
347 348 349 350
    }
  }
}

351 352 353 354
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
355
    auto paddle_var_dtype = PhiDType2PopartDType(
A
Allen Guo 已提交
356
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
357 358 359 360

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
361
                      errors::InvalidArgument(
362 363 364 365 366 367 368 369 370
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
371
                      errors::InvalidArgument(
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
389 390
        std::transform(data_ptr,
                       data_ptr + num_elem,
391 392
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
393 394
        memcpy(reinterpret_cast<void *>(data_ptr),
               fp16_data.data(),
395 396 397 398
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
399 400 401 402 403 404 405
        std::transform(
            fp16_data_ptr,
            fp16_data_ptr + num_elem,
            std::back_inserter(fp32_data),
            [&](uint16_t elem) { return popart::halfToFloat(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr),
               fp32_data.data(),
406 407 408
               num_elem * sizeof(float));
      }
    } else {
409 410
      PADDLE_THROW(
          errors::Unimplemented("Convert Paddle FLOAT16 to popart FLOAT"));
411 412
    }
  }
J
jianghaicheng 已提交
413 414
}

415 416 417 418 419 420 421 422 423 424 425 426 427
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
A
Allen Guo 已提交
428
  session_->weightsFromHost();
429
}
J
jianghaicheng 已提交
430

431 432 433 434 435 436 437 438 439 440 441
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
A
Allen Guo 已提交
442
  session_->weightsToHost();
443 444 445
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
446

447 448 449 450 451 452 453
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
454 455 456 457 458
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle