ipu_executor.cc 16.8 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

17 18 19 20
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
J
jianghaicheng 已提交
21 22 23 24 25

namespace paddle {
namespace platform {
namespace ipu {

26 27
namespace {

A
Allen Guo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Get paddle prefix and popart postfix of weight states
// Format: {popart_postfix, paddle_prefix}
std::vector<std::pair<std::string, std::string>> GetOptPrePostfix(
    const std::string &opt_type) {
  std::vector<std::pair<std::string, std::string>> pre_post_fix;
  // Weight self
  pre_post_fix.push_back(std::make_pair("", ""));

  // Weight states
  // TODO(alleng) support pair("Accl1___", "_moment1_{id!=0}")
  if (opt_type == "adam" || opt_type == "lamb" || opt_type == "adamw") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment1_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_moment2_0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "momentum") {
    pre_post_fix.push_back(std::make_pair("Accl___", "_velocity_0"));
  } else if (opt_type == "adamax") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_inf_norm__0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "adagrad") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
  } else if (opt_type == "adadelta") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "__avg_squared_grad_0"));
    pre_post_fix.push_back(
        std::make_pair("Accl2___", "__avg_squared_update_0"));
  } else if (opt_type == "rmsprop") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_mean_square_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_mean_grad_0"));
    pre_post_fix.push_back(std::make_pair("Accl3___", "_momentum__0"));
  }
  return pre_post_fix;
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class PdIArray final : public popart::IArray {
 public:
  explicit PdIArray(const Tensor *tensor) {
    tensor_.ShareDataWith(*tensor);
    for (int i = 0; i < tensor->dims().size(); ++i) {
      shape_.push_back(tensor->dims().at(i));
    }
  }

 public:
  void *data() { return tensor_.data(); }
  popart::DataType dataType() const {
    return PhiDType2PopartDType(tensor_.dtype());
  }
  std::size_t rank() const { return tensor_.dims().size(); }
  int64_t dim(size_t index) const { return tensor_.dims().at(index); }
  std::size_t nelms() const {
79 80 81 82
    return std::accumulate(shape_.begin(),
                           shape_.end(),
                           static_cast<int64_t>(1),
                           std::multiplies<int64_t>());
83 84 85 86 87 88 89 90 91 92
  }
  const popart::Shape shape() const { return shape_; }

 private:
  Tensor tensor_;
  std::vector<int64_t> shape_;
};

}  // namespace

A
Allen Guo 已提交
93
Executor::~Executor() { Reset(); }
94 95 96

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
A
Allen Guo 已提交
97
  compile_only_ = GetBoolEnv("IPU_COMPILE_ONLY");
J
jianghaicheng 已提交
98

99 100
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
101 102 103

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
104
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
105 106 107 108
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

109
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
110
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
111
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
112
    session_ = popart::TrainingSession::createFromOnnxModel(
113 114 115 116 117 118 119
        proto,
        dataFlow,
        compiler_resources_->loss_var,
        *optimizer,
        device_,
        popart::InputShapeInfo(),
        ipu_strategy_->popart_options,
120
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
121 122 123
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
124 125 126 127 128 129
        proto,
        dataFlow,
        device_,
        popart::InputShapeInfo(),
        ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
130 131 132
  }
  VLOG(10) << "Creating session from Onnx Model...done";

A
Allen Guo 已提交
133 134 135 136 137 138 139 140 141 142 143 144
  if (compile_only_) {
    LOG(INFO)
        << "Save the offline cache as offline_cache.popart in current path.";
    VLOG(10) << "Compile only...";
    session_->compileAndExport("./offline_cache.popart");
    VLOG(10) << "Compile only...done";
    return;
  } else {
    VLOG(10) << "Preparing session device...";
    session_->prepareDevice();
    VLOG(10) << "Preparing session device...done";
  }
J
jianghaicheng 已提交
145 146 147 148 149 150 151

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

A
Allen Guo 已提交
152 153 154
  if (ipu_strategy_->random_seed != std::numeric_limits<std::uint64_t>::max()) {
    VLOG(10) << "Setting random seed to: " << ipu_strategy_->random_seed;
    session_->setRandomSeed(ipu_strategy_->random_seed);
J
jianghaicheng 已提交
155 156 157
  }
}

158 159
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
160
                   const framework::ExecutionContext &ctx) {
A
Allen Guo 已提交
161 162 163 164 165
  if (compile_only_) {
    LOG(INFO) << "If IPU_COMPILE_ONLY=True, skip exe.run";
    return;
  }

166
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
167 168
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
169
  std::map<popart::TensorId, PdIArray> input_wrappers;
J
jianghaicheng 已提交
170
  for (size_t i = 0; i < inputs.size(); i++) {
171
    auto tensor_id = compiler_resources_->inputs[i];
172
    input_wrappers.emplace(tensor_id, PdIArray(inputs[i]));
J
jianghaicheng 已提交
173 174 175 176
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
177
  std::map<popart::TensorId, PdIArray> anchor_wrappers;
J
jianghaicheng 已提交
178
  for (size_t i = 0; i < outputs.size(); i++) {
179
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
180 181 182 183 184 185 186
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
187 188 189 190 191 192 193 194 195 196
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
197
    tensor->Resize(phi::make_ddim(output_shape));
J
jianghaicheng 已提交
198
    auto fetch_dtype = fetch_info.dataType();
199
    auto paddle_type = PopartDType2VarType(fetch_dtype);
200
    tensor->mutable_data(ctx.GetPlace(),
201
                         framework::TransToPhiDataType(paddle_type));
202
    anchor_wrappers.emplace(tensor_id, PdIArray(tensor));
J
jianghaicheng 已提交
203 204
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
205 206
  VLOG(10) << "Prepared inputs/anchors";

207 208 209
  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched &&
      !(ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
        ipu_strategy_->runtime_options.enable_eval)) {
A
Allen Guo 已提交
210 211 212 213 214 215 216 217 218 219 220
    popart::Optimizer *optimizer;
    if (ipu_strategy_->runtime_options.enable_eval) {
      VLOG(10) << "Switch optimizer to eval mode";
      optimizer = compiler_resources_->eval_optimizer.get();
    } else {
      VLOG(10) << "Update learning_rate";
      auto new_lr =
          GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
      VLOG(10) << "New Lr: " << new_lr;
      optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    }
221 222
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
223 224 225 226
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
227 228 229 230 231 232
  if (ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
      ipu_strategy_->runtime_options.enable_eval) {
    session_->run("implicitPipeliningFwdOnly", stepio);
  } else {
    session_->run(stepio);
  }
J
jianghaicheng 已提交
233
  VLOG(10) << "Running...done";
A
Allen Guo 已提交
234
}
J
jianghaicheng 已提交
235

A
Allen Guo 已提交
236 237
void Executor::WeightsToHost() {
  if (ipu_strategy_->is_training && session_) {
J
jianghaicheng 已提交
238
    WeightsToPaddle();
A
Allen Guo 已提交
239 240
  } else {
    LOG(WARNING) << "For a non-trainning graph, cannot sync weights from IPU.";
J
jianghaicheng 已提交
241 242 243
  }
}

244 245 246 247 248 249
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
250

251
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
A
Allen Guo 已提交
252
  bool enable_distribution = ipu_strategy_->enable_distribution;
253
  if (use_ipu_model) {
A
Allen Guo 已提交
254
    VLOG(10) << "Create IPU model device...";
A
Allen Guo 已提交
255 256
    std::map<std::string, std::string> deviceOpts{
        {
257 258
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
259 260 261
        },
        {"ipuVersion", "ipu2"},
    };
262 263
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
A
Allen Guo 已提交
264 265 266 267 268
    VLOG(10) << "Create IPU model device...done";
  } else if (compile_only_) {
    VLOG(10) << "Create offline device...";
    std::map<std::string, std::string> deviceOpts{
        {
269 270
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
271 272 273 274 275 276 277
        },
        {"ipuVersion", "ipu2"},
    };
    device_ =
        popart::DeviceManager::createDeviceManager().createOfflineIPUDevice(
            deviceOpts);
    VLOG(10) << "Create offline device...done";
A
Allen Guo 已提交
278
  } else if (enable_distribution) {
A
Allen Guo 已提交
279
    VLOG(10) << "Create distribution device...";
A
Allen Guo 已提交
280 281 282 283 284 285
    auto ipus_per_replica = ipu_strategy_->num_ipus /
                            ipu_strategy_->popart_options.replicatedGraphCount;
    auto device_id = popdist_get_device(ipus_per_replica);
    device_ = popart::DeviceManager::createDeviceManager().acquireDeviceById(
        device_id);
    PADDLE_ENFORCE_NOT_NULL(
286 287 288
        device_,
        errors::Unavailable("Can't attach IPU in distribution, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
289
    VLOG(10) << "Create distribution device...done";
290
  } else {
A
Allen Guo 已提交
291
    VLOG(10) << "Create IPU device...";
292 293 294
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
295
    PADDLE_ENFORCE_NOT_NULL(
296 297 298
        device_,
        errors::Unavailable("Can't attach IPU, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
299
    VLOG(10) << "Create IPU device...done";
300 301
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
302 303
}

304 305 306 307 308 309
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
310 311
}

A
Allen Guo 已提交
312 313 314 315 316 317
void Executor::Reset() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

J
jianghaicheng 已提交
318
void Executor::SetWeightsIO() {
319 320
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
321
  auto pre_post_fix = GetOptPrePostfix(opt_type);
A
Allen Guo 已提交
322
  for (const auto &weight_pd : compiler_resources_->weights) {
J
jianghaicheng 已提交
323 324
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
A
Allen Guo 已提交
325 326 327
      auto weight_pop = compiler_resources_->tensors[weight_pd];
      auto popart_var = pair.first + weight_pop;
      auto paddle_var = weight_pd + pair.second;
J
jianghaicheng 已提交
328

A
Allen Guo 已提交
329
      if (scope_->FindVar(paddle_var) == nullptr) {
J
jianghaicheng 已提交
330 331
        continue;
      }
A
Allen Guo 已提交
332
      if (!session_->hasInfo(popart_var)) {
333 334 335
        continue;
      }

A
Allen Guo 已提交
336 337 338
      VLOG(10) << "Connect paddle weight: " << paddle_var
               << " with popart weight: " << popart_var;
      auto var = scope_->GetVar(paddle_var);
339
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
A
Allen Guo 已提交
340 341
      auto tensor_info = session_->getInfo(popart_var);
      executor_resources_->weights_io.insert(popart_var,
342 343
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
A
Allen Guo 已提交
344
          std::make_pair(popart_var, paddle_var));
J
jianghaicheng 已提交
345 346 347 348
    }
  }
}

349 350 351 352
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
353
    auto paddle_var_dtype = PhiDType2PopartDType(
A
Allen Guo 已提交
354
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
355 356 357 358

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
359
                      errors::InvalidArgument(
360 361 362 363 364 365 366 367 368
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
369
                      errors::InvalidArgument(
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
387 388
        std::transform(data_ptr,
                       data_ptr + num_elem,
389 390
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
391 392
        memcpy(reinterpret_cast<void *>(data_ptr),
               fp16_data.data(),
393 394 395 396
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
397 398 399 400 401 402 403
        std::transform(
            fp16_data_ptr,
            fp16_data_ptr + num_elem,
            std::back_inserter(fp32_data),
            [&](uint16_t elem) { return popart::halfToFloat(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr),
               fp32_data.data(),
404 405 406
               num_elem * sizeof(float));
      }
    } else {
407 408
      PADDLE_THROW(
          errors::Unimplemented("Convert Paddle FLOAT16 to popart FLOAT"));
409 410
    }
  }
J
jianghaicheng 已提交
411 412
}

413 414 415 416 417 418 419 420 421 422 423 424 425
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
A
Allen Guo 已提交
426
  session_->weightsFromHost();
427
}
J
jianghaicheng 已提交
428

429 430 431 432 433 434 435 436 437 438 439
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
A
Allen Guo 已提交
440
  session_->weightsToHost();
441 442 443
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
444

445 446 447 448 449 450 451
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
452 453 454 455 456
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle