ipu_executor.cc 16.7 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

17 18 19 20
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
J
jianghaicheng 已提交
21 22 23 24 25

namespace paddle {
namespace platform {
namespace ipu {

26 27
namespace {

A
Allen Guo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Get paddle prefix and popart postfix of weight states
// Format: {popart_postfix, paddle_prefix}
std::vector<std::pair<std::string, std::string>> GetOptPrePostfix(
    const std::string &opt_type) {
  std::vector<std::pair<std::string, std::string>> pre_post_fix;
  // Weight self
  pre_post_fix.push_back(std::make_pair("", ""));

  // Weight states
  // TODO(alleng) support pair("Accl1___", "_moment1_{id!=0}")
  if (opt_type == "adam" || opt_type == "lamb" || opt_type == "adamw") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment1_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_moment2_0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "momentum") {
    pre_post_fix.push_back(std::make_pair("Accl___", "_velocity_0"));
  } else if (opt_type == "adamax") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_inf_norm__0"));
    pre_post_fix.push_back(std::make_pair("Step___", "_beta1_pow_acc_0"));
  } else if (opt_type == "adagrad") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_moment_0"));
  } else if (opt_type == "adadelta") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "__avg_squared_grad_0"));
    pre_post_fix.push_back(
        std::make_pair("Accl2___", "__avg_squared_update_0"));
  } else if (opt_type == "rmsprop") {
    pre_post_fix.push_back(std::make_pair("Accl1___", "_mean_square_0"));
    pre_post_fix.push_back(std::make_pair("Accl2___", "_mean_grad_0"));
    pre_post_fix.push_back(std::make_pair("Accl3___", "_momentum__0"));
  }
  return pre_post_fix;
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
class PdIArray final : public popart::IArray {
 public:
  explicit PdIArray(const Tensor *tensor) {
    tensor_.ShareDataWith(*tensor);
    for (int i = 0; i < tensor->dims().size(); ++i) {
      shape_.push_back(tensor->dims().at(i));
    }
  }

 public:
  void *data() { return tensor_.data(); }
  popart::DataType dataType() const {
    return PhiDType2PopartDType(tensor_.dtype());
  }
  std::size_t rank() const { return tensor_.dims().size(); }
  int64_t dim(size_t index) const { return tensor_.dims().at(index); }
  std::size_t nelms() const {
    return std::accumulate(shape_.begin(), shape_.end(),
                           static_cast<int64_t>(1), std::multiplies<int64_t>());
  }
  const popart::Shape shape() const { return shape_; }

 private:
  Tensor tensor_;
  std::vector<int64_t> shape_;
};

}  // namespace

A
Allen Guo 已提交
91
Executor::~Executor() { Reset(); }
92 93 94

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
A
Allen Guo 已提交
95
  compile_only_ = GetBoolEnv("IPU_COMPILE_ONLY");
J
jianghaicheng 已提交
96

97 98
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
99 100 101

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
102
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
103 104 105 106
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

107
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
108
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
109
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
110
    session_ = popart::TrainingSession::createFromOnnxModel(
111 112 113
        proto, dataFlow, compiler_resources_->loss_var, *optimizer, device_,
        popart::InputShapeInfo(), ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
114 115 116
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
117 118
        proto, dataFlow, device_, popart::InputShapeInfo(),
        ipu_strategy_->popart_options, ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
119 120 121
  }
  VLOG(10) << "Creating session from Onnx Model...done";

A
Allen Guo 已提交
122 123 124 125 126 127 128 129 130 131 132 133
  if (compile_only_) {
    LOG(INFO)
        << "Save the offline cache as offline_cache.popart in current path.";
    VLOG(10) << "Compile only...";
    session_->compileAndExport("./offline_cache.popart");
    VLOG(10) << "Compile only...done";
    return;
  } else {
    VLOG(10) << "Preparing session device...";
    session_->prepareDevice();
    VLOG(10) << "Preparing session device...done";
  }
J
jianghaicheng 已提交
134 135 136 137 138 139 140

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

A
Allen Guo 已提交
141 142 143
  if (ipu_strategy_->random_seed != std::numeric_limits<std::uint64_t>::max()) {
    VLOG(10) << "Setting random seed to: " << ipu_strategy_->random_seed;
    session_->setRandomSeed(ipu_strategy_->random_seed);
J
jianghaicheng 已提交
144 145 146
  }
}

147 148
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
149
                   const framework::ExecutionContext &ctx) {
A
Allen Guo 已提交
150 151 152 153 154
  if (compile_only_) {
    LOG(INFO) << "If IPU_COMPILE_ONLY=True, skip exe.run";
    return;
  }

155
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
156 157
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
158
  std::map<popart::TensorId, PdIArray> input_wrappers;
J
jianghaicheng 已提交
159
  for (size_t i = 0; i < inputs.size(); i++) {
160
    auto tensor_id = compiler_resources_->inputs[i];
161
    input_wrappers.emplace(tensor_id, PdIArray(inputs[i]));
J
jianghaicheng 已提交
162 163 164 165
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
166
  std::map<popart::TensorId, PdIArray> anchor_wrappers;
J
jianghaicheng 已提交
167
  for (size_t i = 0; i < outputs.size(); i++) {
168
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
169 170 171 172 173 174 175
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
176 177 178 179 180 181 182 183 184 185
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
186
    tensor->Resize(phi::make_ddim(output_shape));
J
jianghaicheng 已提交
187
    auto fetch_dtype = fetch_info.dataType();
188
    auto paddle_type = PopartDType2VarType(fetch_dtype);
189
    tensor->mutable_data(ctx.GetPlace(),
190
                         framework::TransToPhiDataType(paddle_type));
191
    anchor_wrappers.emplace(tensor_id, PdIArray(tensor));
J
jianghaicheng 已提交
192 193
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
194 195
  VLOG(10) << "Prepared inputs/anchors";

196 197 198
  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched &&
      !(ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
        ipu_strategy_->runtime_options.enable_eval)) {
A
Allen Guo 已提交
199 200 201 202 203 204 205 206 207 208 209
    popart::Optimizer *optimizer;
    if (ipu_strategy_->runtime_options.enable_eval) {
      VLOG(10) << "Switch optimizer to eval mode";
      optimizer = compiler_resources_->eval_optimizer.get();
    } else {
      VLOG(10) << "Update learning_rate";
      auto new_lr =
          GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
      VLOG(10) << "New Lr: " << new_lr;
      optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    }
210 211
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
212 213 214 215
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
216 217 218 219 220 221
  if (ipu_strategy_->popart_options.createImplicitPipeliningFwdOnlyProgram &&
      ipu_strategy_->runtime_options.enable_eval) {
    session_->run("implicitPipeliningFwdOnly", stepio);
  } else {
    session_->run(stepio);
  }
J
jianghaicheng 已提交
222
  VLOG(10) << "Running...done";
A
Allen Guo 已提交
223
}
J
jianghaicheng 已提交
224

A
Allen Guo 已提交
225 226
void Executor::WeightsToHost() {
  if (ipu_strategy_->is_training && session_) {
J
jianghaicheng 已提交
227
    WeightsToPaddle();
A
Allen Guo 已提交
228 229
  } else {
    LOG(WARNING) << "For a non-trainning graph, cannot sync weights from IPU.";
J
jianghaicheng 已提交
230 231 232
  }
}

233 234 235 236 237 238
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
239

240
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
A
Allen Guo 已提交
241
  bool enable_distribution = ipu_strategy_->enable_distribution;
242
  if (use_ipu_model) {
A
Allen Guo 已提交
243
    VLOG(10) << "Create IPU model device...";
A
Allen Guo 已提交
244 245
    std::map<std::string, std::string> deviceOpts{
        {
246 247
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
248 249 250
        },
        {"ipuVersion", "ipu2"},
    };
251 252
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
A
Allen Guo 已提交
253 254 255 256 257
    VLOG(10) << "Create IPU model device...done";
  } else if (compile_only_) {
    VLOG(10) << "Create offline device...";
    std::map<std::string, std::string> deviceOpts{
        {
258 259
            "numIPUs",
            std::to_string(ipu_strategy_->num_ipus),
A
Allen Guo 已提交
260 261 262 263 264 265 266
        },
        {"ipuVersion", "ipu2"},
    };
    device_ =
        popart::DeviceManager::createDeviceManager().createOfflineIPUDevice(
            deviceOpts);
    VLOG(10) << "Create offline device...done";
A
Allen Guo 已提交
267
  } else if (enable_distribution) {
A
Allen Guo 已提交
268
    VLOG(10) << "Create distribution device...";
A
Allen Guo 已提交
269 270 271 272 273 274
    auto ipus_per_replica = ipu_strategy_->num_ipus /
                            ipu_strategy_->popart_options.replicatedGraphCount;
    auto device_id = popdist_get_device(ipus_per_replica);
    device_ = popart::DeviceManager::createDeviceManager().acquireDeviceById(
        device_id);
    PADDLE_ENFORCE_NOT_NULL(
275 276 277
        device_,
        errors::Unavailable("Can't attach IPU in distribution, ipu_num = %d.",
                            RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
278
    VLOG(10) << "Create distribution device...done";
279
  } else {
A
Allen Guo 已提交
280
    VLOG(10) << "Create IPU device...";
281 282 283
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
284 285 286
    PADDLE_ENFORCE_NOT_NULL(
        device_, errors::Unavailable("Can't attach IPU, ipu_num = %d.",
                                     RequestIpus(ipu_strategy_->num_ipus)));
A
Allen Guo 已提交
287
    VLOG(10) << "Create IPU device...done";
288 289
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
290 291
}

292 293 294 295 296 297
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
298 299
}

A
Allen Guo 已提交
300 301 302 303 304 305
void Executor::Reset() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

J
jianghaicheng 已提交
306
void Executor::SetWeightsIO() {
307 308
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
309
  auto pre_post_fix = GetOptPrePostfix(opt_type);
A
Allen Guo 已提交
310
  for (const auto &weight_pd : compiler_resources_->weights) {
J
jianghaicheng 已提交
311 312
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
A
Allen Guo 已提交
313 314 315
      auto weight_pop = compiler_resources_->tensors[weight_pd];
      auto popart_var = pair.first + weight_pop;
      auto paddle_var = weight_pd + pair.second;
J
jianghaicheng 已提交
316

A
Allen Guo 已提交
317
      if (scope_->FindVar(paddle_var) == nullptr) {
J
jianghaicheng 已提交
318 319
        continue;
      }
A
Allen Guo 已提交
320
      if (!session_->hasInfo(popart_var)) {
321 322 323
        continue;
      }

A
Allen Guo 已提交
324 325 326
      VLOG(10) << "Connect paddle weight: " << paddle_var
               << " with popart weight: " << popart_var;
      auto var = scope_->GetVar(paddle_var);
327
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
A
Allen Guo 已提交
328 329
      auto tensor_info = session_->getInfo(popart_var);
      executor_resources_->weights_io.insert(popart_var,
330 331
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
A
Allen Guo 已提交
332
          std::make_pair(popart_var, paddle_var));
J
jianghaicheng 已提交
333 334 335 336
    }
  }
}

337 338 339 340
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
341
    auto paddle_var_dtype = PhiDType2PopartDType(
A
Allen Guo 已提交
342
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
343 344 345 346

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
347
                      errors::InvalidArgument(
348 349 350 351 352 353 354 355 356
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
357
                      errors::InvalidArgument(
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
        std::transform(data_ptr, data_ptr + num_elem,
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr), fp16_data.data(),
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
        std::transform(fp16_data_ptr, fp16_data_ptr + num_elem,
                       std::back_inserter(fp32_data), [&](uint16_t elem) {
                         return popart::halfToFloat(elem);
                       });
        memcpy(reinterpret_cast<void *>(data_ptr), fp32_data.data(),
               num_elem * sizeof(float));
      }
    } else {
391 392
      PADDLE_THROW(
          errors::Unimplemented("Convert Paddle FLOAT16 to popart FLOAT"));
393 394
    }
  }
J
jianghaicheng 已提交
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
A
Allen Guo 已提交
410
  session_->weightsFromHost();
411
}
J
jianghaicheng 已提交
412

413 414 415 416 417 418 419 420 421 422 423
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
A
Allen Guo 已提交
424
  session_->weightsToHost();
425 426 427
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
428

429 430 431 432 433 434 435
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
436 437 438 439 440
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle