elementwise_sub_op.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15
#pragma once
16

W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
18
#include "paddle/fluid/platform/place.h"
G
gongweibao 已提交
19

20
#include "paddle/pten/kernels/math_kernel.h"
G
gongweibao 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
29 30 31
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
32 33 34 35 36 37
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
38 39
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
41
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
42 43
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
44 45 46
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
47
    z->mutable_data<T>(ctx.GetPlace());
48

49 50 51 52 53
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
54
    pten::SubtractRawKernel<T>(
W
Wilber 已提交
55 56 57
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
        *pt_x.get(), *pt_y.get(), axis, pt_z.get());
G
gongweibao 已提交
58 59 60 61
  }
};

template <typename T>
C
chengduoZH 已提交
62 63
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
64 65 66
};

template <typename T>
C
chengduoZH 已提交
67 68
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
69 70
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");

  ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}

86 87 88 89 90 91 92 93
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
94
  default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
95 96
}

97
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
98
// cuda definition
99 100 101 102 103 104 105 106 107 108
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy);

109 110 111 112 113 114 115 116 117 118
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
119
template <typename DeviceContext, typename T>
120
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
121 122
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
123
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
124 125
    using Tensor = framework::Tensor;

126 127
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
C
chengduoZH 已提交
128 129 130
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
131
    // skip out
132
    auto* out = dout;
133 134 135
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
136 137
      default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
138
    }
G
gongweibao 已提交
139 140
  }
};
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

template <typename DeviceContext, typename T>
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* ddout = ctx.Output<Tensor>("DDOut");

    // DDOut = ddx - ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      int axis = ctx.Attr<int>("axis");
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
    }
  }
};

G
gongweibao 已提交
169 170
}  // namespace operators
}  // namespace paddle