elementwise_sub_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15
#pragma once
16

W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
G
gongweibao 已提交
18

19
#include "paddle/pten/kernels/math_kernel.h"
G
gongweibao 已提交
20 21 22
namespace paddle {
namespace operators {

23 24 25 26 27
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
28 29 30
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
31 32 33 34 35 36
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
37 38
}

Q
QI JUN 已提交
39
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
40
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
41 42
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
43 44 45
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
46
    z->mutable_data<T>(ctx.GetPlace());
47

48 49 50 51 52
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
53 54
    pten::SubtractKernel<T>(dev_ctx, *pt_x.get(), *pt_y.get(), axis,
                            pt_z.get());
G
gongweibao 已提交
55 56 57 58
  }
};

template <typename T>
C
chengduoZH 已提交
59 60
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
61 62 63
};

template <typename T>
C
chengduoZH 已提交
64 65
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
66 67
};

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");

  ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}

83 84 85 86 87 88 89 90
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
91
  default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
92 93
}

94
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
95
// cuda definition
96 97 98 99 100 101 102 103 104 105
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_sub_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy);

106 107 108 109 110 111 112 113 114 115
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
116
template <typename DeviceContext, typename T>
117
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
118 119
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
120
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
121 122
    using Tensor = framework::Tensor;

123 124
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
C
chengduoZH 已提交
125 126 127
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
128
    // skip out
129
    auto* out = dout;
130 131 132
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
133 134
      default_elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
135
    }
G
gongweibao 已提交
136 137
  }
};
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

template <typename DeviceContext, typename T>
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* ddout = ctx.Output<Tensor>("DDOut");

    // DDOut = ddx - ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      int axis = ctx.Attr<int>("axis");
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
    }
  }
};

G
gongweibao 已提交
166 167
}  // namespace operators
}  // namespace paddle