elementwise_sub_op.h 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15
#pragma once
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
29 30 31
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
32 33 34 35 36 37
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
38 39 40 41 42 43 44
}

template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseSub {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
45 46
};

Q
QI JUN 已提交
47
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
48
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
49 50
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
51 52 53
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
54
    z->mutable_data<T>(ctx.GetPlace());
55 56 57 58 59 60 61 62

    auto dims_equal = x->dims() == y->dims();
    if (dims_equal) {
      SameDimsElemwiseSub<DeviceContext, T> same_dims_sub;
      same_dims_sub(ctx, x, y, z);
    } else {
      default_elementwise_sub<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
63 64 65 66
  }
};

template <typename T>
C
chengduoZH 已提交
67 68
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
69 70 71
};

template <typename T>
C
chengduoZH 已提交
72 73
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
74 75
};

76 77 78 79 80 81 82 83 84 85 86 87 88
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}

89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91 92 93 94 95 96 97 98 99 100
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
101
template <typename DeviceContext, typename T>
102
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
103 104
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
105
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
106 107
    using Tensor = framework::Tensor;

108 109
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
C
chengduoZH 已提交
110 111 112 113
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
114
    // skip out
115
    auto* out = dout;
116 117 118 119 120 121 122
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(),
          SubGradDY<T>());
    }
G
gongweibao 已提交
123 124
  }
};
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

template <typename DeviceContext, typename T>
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* ddout = ctx.Output<Tensor>("DDOut");

    // DDOut = ddx - ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      int axis = ctx.Attr<int>("axis");
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
    }
  }
};

G
gongweibao 已提交
153 154
}  // namespace operators
}  // namespace paddle