rank_loss_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/rank_loss_op.h"
16
#include <string>
Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

28
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
29
    // input check
K
kexinzhao 已提交
30 31 32
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
Q
Qiao Longfei 已提交
33 34 35 36 37

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");

Y
Yibing Liu 已提交
38
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
Y
Yibing Liu 已提交
39 40 41 42
                   "All inputs must have the same size.");
    PADDLE_ENFORCE(
        (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensors with shape [batch_size x 1].");
Q
Qiao Longfei 已提交
43
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
44 45 46 47 48
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
Y
Yibing Liu 已提交
50
    AddInput("Label",
Y
Yibing Liu 已提交
51 52 53 54 55 56 57 58 59 60 61
             "(2-D Tensor with shape [batch_size x 1]) "
             "The label indicating A ranked higher than B or not.");
    AddInput("Left",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc A.");
    AddInput("Right",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc B.");
    AddOutput("Out",
              "(2-D Tensor with shape [batch_size x 1]) "
              "The output loss of RankLoss operator.");
K
kexinzhao 已提交
62 63
    AddComment(R"DOC(
RankLoss Operator.
Y
Yibing Liu 已提交
64

K
kexinzhao 已提交
65 66 67
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
RankNet is a pairwise ranking model with
Y
Yibing Liu 已提交
68 69 70 71 72 73
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

K
kexinzhao 已提交
74
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
Y
Yibing Liu 已提交
75 76 77
(P_{i,j}), which represent the output score of RankNet for the two docs and 
the label respectively, and yields the rank loss C_{i,j} using the following 
equation:
Y
Yibing Liu 已提交
78

79 80
$$
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
Y
Yibing Liu 已提交
81 82
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
83
$$
Y
Yibing Liu 已提交
84

Y
Yibing Liu 已提交
85
The operator can take batch inputs with size batch_size (batch_size >= 1).
Y
Yibing Liu 已提交
86

Y
Yibing Liu 已提交
87 88 89 90 91 92 93 94 95 96 97 98
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

99
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
100 101 102 103 104 105 106 107 108 109 110
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx->GetInputDim("Left");
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
      ctx->SetOutputDim(left_grad_name, dims);
Y
Yibing Liu 已提交
111
    }
Q
Qiao Longfei 已提交
112 113 114

    if (ctx->HasOutput(right_grad_name)) {
      ctx->SetOutputDim(right_grad_name, dims);
Y
Yibing Liu 已提交
115
    }
Y
Yibing Liu 已提交
116 117 118 119 120 121 122
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
123
REGISTER_OPERATOR(rank_loss, ops::RankLossOp, ops::RankLossOpMaker,
124 125
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(rank_loss_grad, ops::RankLossGradOp);
Y
Yibing Liu 已提交
126
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
127 128 129 130
    rank_loss, ops::RankLossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad,
    ops::RankLossGradKernel<paddle::platform::CPUDeviceContext, float>);