rank_loss_op.cc 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/rank_loss_op.h"
16
#include <string>
Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

28
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
29
    // input check
K
kexinzhao 已提交
30 31 32
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
Q
Qiao Longfei 已提交
33 34 35 36 37

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");

Y
Yibing Liu 已提交
38
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
Y
Yibing Liu 已提交
39 40 41 42
                   "All inputs must have the same size.");
    PADDLE_ENFORCE(
        (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensors with shape [batch_size x 1].");
Q
Qiao Longfei 已提交
43
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
44 45 46 47 48
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
49
  RankLossOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
50
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
51
    AddInput("Label",
Y
Yibing Liu 已提交
52 53 54 55 56 57 58 59 60 61 62
             "(2-D Tensor with shape [batch_size x 1]) "
             "The label indicating A ranked higher than B or not.");
    AddInput("Left",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc A.");
    AddInput("Right",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc B.");
    AddOutput("Out",
              "(2-D Tensor with shape [batch_size x 1]) "
              "The output loss of RankLoss operator.");
K
kexinzhao 已提交
63 64
    AddComment(R"DOC(
RankLoss Operator.
Y
Yibing Liu 已提交
65

K
kexinzhao 已提交
66 67 68
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
RankNet is a pairwise ranking model with
Y
Yibing Liu 已提交
69 70 71 72 73 74
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

K
kexinzhao 已提交
75
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
Y
Yibing Liu 已提交
76 77 78
(P_{i,j}), which represent the output score of RankNet for the two docs and 
the label respectively, and yields the rank loss C_{i,j} using the following 
equation:
Y
Yibing Liu 已提交
79

80 81
$$
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
Y
Yibing Liu 已提交
82 83
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
84
$$
Y
Yibing Liu 已提交
85

Y
Yibing Liu 已提交
86
The operator can take batch inputs with size batch_size (batch_size >= 1).
Y
Yibing Liu 已提交
87

Y
Yibing Liu 已提交
88 89 90 91 92 93 94 95 96 97 98 99
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

100
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx->GetInputDim("Left");
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
      ctx->SetOutputDim(left_grad_name, dims);
Y
Yibing Liu 已提交
112
    }
Q
Qiao Longfei 已提交
113 114 115

    if (ctx->HasOutput(right_grad_name)) {
      ctx->SetOutputDim(right_grad_name, dims);
Y
Yibing Liu 已提交
116
    }
Y
Yibing Liu 已提交
117 118 119 120 121 122 123
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
124 125 126
REGISTER_OPERATOR(rank_loss, ops::RankLossOp, ops::RankLossOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>)
REGISTER_OPERATOR(rank_loss_grad, ops::RankLossGradOp)
Y
Yibing Liu 已提交
127
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
128 129 130 131
    rank_loss, ops::RankLossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad,
    ops::RankLossGradKernel<paddle::platform::CPUDeviceContext, float>);