Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ece32910
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ece32910
编写于
9月 20, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine rank_loss_op
上级
f2cfa324
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
104 addition
and
86 deletion
+104
-86
paddle/operators/rank_loss_op.cc
paddle/operators/rank_loss_op.cc
+50
-27
paddle/operators/rank_loss_op.h
paddle/operators/rank_loss_op.h
+38
-48
python/paddle/v2/framework/tests/test_rank_loss_op.py
python/paddle/v2/framework/tests/test_rank_loss_op.py
+16
-11
未找到文件。
paddle/operators/rank_loss_op.cc
浏览文件 @
ece32910
...
...
@@ -28,18 +28,21 @@ class RankLossOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// input check
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"P"
),
"Input(P) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Oi"
),
"Input(Oi) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Oj"
),
"Input(Oj) shouldn't be null"
);
auto
p_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"P"
)
->
dims
();
auto
oi_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oi"
)
->
dims
();
auto
oj_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oj"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
oi_dims
,
oj_dims
,
"Input(Oi) and Input(Oj) must have the same size"
);
PADDLE_ENFORCE_EQ
(
p_dims
,
oi_dims
,
"Input(P) must have the same size with Input(Oi) & Input(Oj)"
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
p_dims
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Left"
),
"Input(Left) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Right"
),
"Input(Right) shouldn't be null"
);
auto
label_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
dims
();
auto
left_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left"
)
->
dims
();
auto
right_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Right"
)
->
dims
();
PADDLE_ENFORCE
((
label_dims
.
size
()
==
1
)
&&
(
left_dims
.
size
()
==
1
)
&&
(
right_dims
.
size
()
==
1
),
"The rank of all inputs must be 1."
);
PADDLE_ENFORCE
((
label_dims
==
left_dims
)
&&
(
left_dims
==
right_dims
),
"All inputs must have the same size"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
label_dims
);
}
};
...
...
@@ -48,14 +51,23 @@ class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
RankLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"P"
,
"The desired target values for posteriors."
);
AddInput
(
"Oi"
,
"The model output for item i."
);
AddInput
(
"Oj"
,
"The model output for item j."
);
AddOutput
(
"Out"
,
"The output tensor of RankLoss operator."
);
AddInput
(
"Label"
,
"The label indicating A ranked higher than B or not, 1-D tensor."
);
AddInput
(
"Left"
,
"The output of RankNet for doc A, 1-D tensor."
);
AddInput
(
"Right"
,
"The output of RankNet for doc B, 1-D tensor"
);
AddOutput
(
"Out"
,
"The output loss of RankLoss operator, 1-D tensor."
);
AddComment
(
R"DOC(RankLoss operator
A rank loss operator for learning to rank (LTR) task. This operator contains
three inputs: P, Oi, and Oj, and the rank cost can be expressed as
Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.
The RankLoss operator contains three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for two docs and the label
respectively, and yields the rank loss C_{i,j} by following the expression
\f[
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
...
...
@@ -63,10 +75,11 @@ three inputs: P, Oi, and Oj, and the rank cost can be expressed as
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f]
A detailed explanation about these notations can be found in
The operator can take inputs of one sample or in batch.
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
Rank useing Gradient Descent.
Rank using Gradient Descent.
http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
)DOC"
);
}
};
...
...
@@ -81,15 +94,25 @@ class RankLossGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"P"
),
"Input(P) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Oi"
),
"Input(Oi) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Oj"
),
"Input(Oj) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Left"
),
"Input(Left) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Right"
),
"Input(Right) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"P"
)
->
dims
();
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"P"
))
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Oi"
))
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Oj"
))
->
Resize
(
dims
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left"
)
->
dims
();
auto
*
left_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Left"
));
auto
*
right_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Right"
));
if
(
left_grad
)
{
left_grad
->
Resize
(
dims
);
}
if
(
right_grad
)
{
right_grad
->
Resize
(
dims
);
}
}
};
...
...
paddle/operators/rank_loss_op.h
浏览文件 @
ece32910
...
...
@@ -24,25 +24,20 @@ template <typename Place, typename T>
class
RankLossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
p_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"P
"
);
auto
*
oi_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oi
"
);
auto
*
oj_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oj
"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
out
_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label
"
);
auto
*
left_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left
"
);
auto
*
right_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Right
"
);
out
_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
out_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
p_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
p_t
);
auto
oi_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
oi_t
);
auto
oj_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
oj_t
);
framework
::
Tensor
o_t
;
o_t
.
Resize
(
oi_t
->
dims
());
o_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
o_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
o_t
);
o_eig
.
device
(
dev
)
=
oi_eig
-
oj_eig
;
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
auto
left
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
left_t
);
auto
right
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
right_t
);
out_eig
.
device
(
dev
)
=
(
1.
+
(
o_eig
).
exp
()).
log
()
-
p_eig
*
o_eig
;
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
out
.
device
(
dev
)
=
(
1.
+
(
left
-
right
).
exp
()).
log
()
-
label
*
(
left
-
right
);
}
};
...
...
@@ -50,40 +45,35 @@ template <typename Place, typename T>
class
RankLossGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_oi
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Oi"
));
auto
*
d_oj
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Oj"
));
auto
*
d_p
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"P"
));
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
p_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"P"
);
auto
*
oi_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oi"
);
auto
*
oj_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Oj"
);
auto
*
d_left_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Left"
));
auto
*
d_right_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Right"
));
d_oi
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_oj
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_p
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
left_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Left"
);
auto
*
right_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Right"
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
d_out_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_out
);
auto
p_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
p_t
);
auto
oi_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
oi_t
);
auto
oj_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
oj_t
);
auto
d_oi_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_oi
);
auto
d_oj_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_oj
);
framework
::
Tensor
o_t
;
o_t
.
Resize
(
oi_t
->
dims
());
o_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
o_eig
=
framework
::
EigenVector
<
T
>::
Flatten
(
o_t
);
o_eig
.
device
(
dev
)
=
oi_eig
-
oj_eig
;
// dOi & dOj
d_oi_eig
.
device
(
dev
)
=
d_out_eig
*
(
o_eig
.
exp
()
/
(
1.
+
o_eig
.
exp
())
-
p_eig
);
d_oj_eig
.
device
(
dev
)
=
-
d_oi_eig
;
// dP
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_p
).
device
(
dev
)
=
-
o_eig
;
auto
d_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_out_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
auto
left
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
left_t
);
auto
right
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
right_t
);
// compute d_left
if
(
d_left_t
)
{
d_left_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_left
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_left_t
);
d_left
.
device
(
dev
)
=
d_out
*
(
1.
/
(
1.
+
(
right
-
left
).
exp
())
-
label
);
}
// compute d_right
if
(
d_right_t
)
{
d_right_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_right
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_right_t
);
d_right
.
device
(
dev
)
=
-
d_out
*
(
1.0
/
(
1.
+
(
right
-
left
).
exp
())
-
label
);
}
}
};
}
// namespace operators
...
...
python/paddle/v2/framework/tests/test_rank_loss_op.py
浏览文件 @
ece32910
...
...
@@ -3,24 +3,29 @@ import numpy as np
from
op_test
import
OpTest
class
TestR
eshape
Op
(
OpTest
):
class
TestR
ankLoss
Op
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"rank_loss"
num
=
5
# P = {0, 1.0} or {0, 0.5, 1.0}
P
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
num
,
num
)).
astype
(
"float32"
)
Oi
=
np
.
random
.
random
((
num
,
num
)).
astype
(
"float32"
)
Oj
=
np
.
random
.
random
((
num
,
num
)).
astype
(
"float32"
)
O
=
Oi
-
Oj
Out
=
np
.
log
(
1.0
+
np
.
exp
(
O
))
-
P
*
O
self
.
inputs
=
{
'P'
:
P
,
'Oi'
:
Oi
,
'Oj'
:
Oj
}
self
.
outputs
=
{
'Out'
:
Out
}
batch_size
=
5
# labels_{i} = {0, 1.0} or {0, 0.5, 1.0}
label
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
batch_size
,
)).
astype
(
"float32"
)
left
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
right
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
loss
=
np
.
log
(
1.0
+
np
.
exp
(
left
-
right
))
-
label
*
(
left
-
right
)
self
.
inputs
=
{
'Label'
:
label
,
'Left'
:
left
,
'Right'
:
right
}
self
.
outputs
=
{
'Out'
:
loss
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Oj"
],
"Out"
)
self
.
check_grad
([
"Left"
,
"Right"
],
"Out"
)
def
test_check_grad_ignore_left
(
self
):
self
.
check_grad
([
"Right"
],
"Out"
,
no_grad_set
=
set
(
'Left'
))
def
test_check_grad_ignore_right
(
self
):
self
.
check_grad
([
"Left"
],
"Out"
,
no_grad_set
=
set
(
'Right'
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录