collective.py 30.3 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
import math
from functools import reduce
20
import os
21 22 23 24 25 26 27 28 29 30 31

import collections
import six
import logging

import numpy as np

from .. import core, unique_name
from ..framework import Program, default_main_program, default_startup_program
from .details import wait_server_ready

Y
yaoxuefeng 已提交
32
__all__ = ['GradAllReduce', 'LocalSGD', 'MultiThread']
33 34 35 36 37 38 39 40

OpRole = core.op_proto_and_checker_maker.OpRole


class Collective(object):
    '''
    '''

41 42
    def __init__(self, nrings):
        self.nrings = nrings
43 44
        self.endpoints = None
        self.current_endpoint = None
F
Fan Zhang 已提交
45
        self.other_endpoints = None
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        self.nranks = None
        self.rank = None
        self.startup_program = None
        self.main_program = None
        op_maker = core.op_proto_and_checker_maker
        self.op_role_key = op_maker.kOpRoleAttrName()
        self.op_role_var_key = op_maker.kOpRoleVarAttrName()

    def transpile(self, startup_program, main_program, rank, endpoints,
                  current_endpoint, wait_port):
        # in case of '127.0.0.1:6700,127.0.0.1:6701,...'
        if isinstance(endpoints, str):
            endpoints = endpoints.split(',')

        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = default_startup_program()

        self.main_program = main_program
        if main_program is None:
            self.main_program = default_main_program()

        self.nranks = len(endpoints)
D
danleifeng 已提交
69
        if self.nranks == 1 and self.mode != "single_process_multi_thread" and self.mode != "box":
70 71 72 73 74 75 76 77 78 79 80 81 82
            raise ValueError('the number of endpoints must > 1')

        if rank < 0:
            raise ValueError('rank must >= 0')
        self.rank = rank

        if current_endpoint not in endpoints:
            raise ValueError('current endpoint %s is not in %s',
                             current_endpoint, str(endpoints))

        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

F
Fan Zhang 已提交
83 84 85 86 87 88
        if current_endpoint:
            nranks = len(endpoints)
            other_endpoints = endpoints[:]
            other_endpoints.remove(current_endpoint)
            self.other_endpoints = other_endpoints

89 90 91 92 93 94 95 96 97 98 99 100
        self.wait_port = wait_port

        self.startup_program._origin_program = self.startup_program.clone()
        self._transpile_startup_program()

        self.main_program._origin_program = self.main_program.clone()
        self._transpile_main_program()

    def _transpile_main_program(self):
        raise NotImplementedError('call the inherited method of subclasses')

    def _transpile_startup_program(self):
101 102 103 104
        for ring_id in range(self.nrings):
            self._init_communicator(self.startup_program, self.current_endpoint,
                                    self.endpoints, self.rank, ring_id,
                                    self.wait_port)
105 106
        self._broadcast_params()

Y
yaoxuefeng 已提交
107 108 109 110 111 112 113 114
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           has_multitrainer=False):
115 116 117
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
118 119
        block = program.global_block()

120 121 122 123
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
124
        if core.is_compiled_with_npu():
125 126 127
            hccl_id_var = block.create_var(name=unique_name.generate('hccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
128
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
            block.append_op(type='c_gen_hccl_id',
                            inputs={},
                            outputs={'Out': hccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
            block.append_op(type='c_comm_init_hccl',
                            inputs={'X': hccl_id_var},
                            outputs={},
                            attrs={
                                'rank': rank,
                                'ring_id': ring_id,
                                'device_id':
                                int(os.getenv("FLAGS_selected_npus")),
                                'rank_ids': nranks,
                                self.op_role_key: OpRole.Forward
                            })
149
        else:
150 151 152 153 154 155 156 157 158 159 160 161
            nccl_id_var = block.create_var(name=unique_name.generate('nccl_id'),
                                           persistable=True,
                                           type=core.VarDesc.VarType.RAW)
            block.append_op(type='c_gen_nccl_id',
                            inputs={},
                            outputs={'Out': nccl_id_var},
                            attrs={
                                'rank': rank,
                                'endpoint': current_endpoint,
                                'other_endpoints': other_endpoints,
                                self.op_role_key: OpRole.Forward
                            })
Y
yaoxuefeng 已提交
162
            if not has_multitrainer:
163 164 165 166 167 168 169 170 171
                block.append_op(type='c_comm_init',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'nranks': nranks,
                                    'rank': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
Y
yaoxuefeng 已提交
172
            else:
173 174 175 176 177 178 179 180 181
                block.append_op(type='c_comm_init_multitrainer',
                                inputs={'X': nccl_id_var},
                                outputs={},
                                attrs={
                                    'ntrainers': nranks,
                                    'trainer_id': rank,
                                    'ring_id': ring_id,
                                    self.op_role_key: OpRole.Forward
                                })
182 183 184

    def _broadcast_params(self):
        block = self.startup_program.global_block()
185 186
        ring_id = -1
        for param in block.iter_parameters():
187 188 189
            if param.is_distributed:
                continue

190
            ring_id = (ring_id + 1) % self.nrings
191 192 193 194 195 196 197 198
            block.append_op(type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                'root': 0,
                                self.op_role_key: OpRole.Forward
                            })
199 200

        for ring_id in range(self.nrings):
201 202 203 204 205 206 207
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Forward
                            })
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    def _is_loss_grad_op(self, op):
        if self.op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self.op_role_key])
        return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)

    def _is_backward_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Backward)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and \
                "LearningRate" in op.input_names

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and \
                int(op.all_attrs()[self.op_role_key]) & int(OpRole.Optimize)


class GradAllReduce(Collective):
    '''
    '''

232 233
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
H
hutuxian 已提交
234
        self.mode = "grad_allreduce"
235 236 237 238 239 240 241 242 243 244 245 246 247 248

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        self._insert_allreduce_ops()

    def _insert_scale_loss_grad_ops(self):
        '''
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        '''
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
249 250 251 252 253 254 255 256
                block._insert_op(idx + 1,
                                 type='scale',
                                 inputs={'X': loss_grad_var},
                                 outputs={'Out': loss_grad_var},
                                 attrs={
                                     'scale': 1.0 / self.nranks,
                                     self.op_role_key: OpRole.Backward
                                 })
257 258 259

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
260 261
        ring_id = -1
        grad = None
262 263 264 265 266 267 268 269 270
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

271
                offset = idx
272
                for i in range(0, len(op_role_var), 2):
273 274
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
275 276 277
                    if param.is_distributed:
                        continue

278 279 280 281 282 283 284 285 286 287 288 289 290
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allreduce_sum
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
291 292 293 294 295 296 297 298
                    block._insert_op(offset,
                                     type='c_allreduce_sum',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
299 300 301

        if grad is None:
            return
302 303 304

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
305
                for ring_id in range(self.nrings):
306 307 308 309 310 311 312 313
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
314 315 316 317 318 319 320
                break


class LocalSGD(Collective):
    '''
    '''

321 322
    def __init__(self, nrings=2):
        Collective.__init__(self, nrings)
323
        self.snapshot_key = '@SNAPSHOT'
H
hutuxian 已提交
324
        self.mode = "local_sgd"
325 326 327 328 329

    def _transpile_startup_program(self):
        Collective._transpile_startup_program(self)

        block = self.startup_program.global_block()
330
        non_dist_params = []
331
        for param in block.iter_parameters():
332 333
            if not param.is_distributed:
                non_dist_params.append(param)
334

335
        for param in non_dist_params:
336 337 338 339 340 341 342 343
            snapshot = block.create_var(name=self.snapshot_name(param.name),
                                        shape=param.shape,
                                        persistable=True,
                                        stop_gradient=True)
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Forward})
344 345 346 347 348 349 350

    def snapshot_name(self, param_name):
        return param_name + self.snapshot_key

    def _transpile_main_program(self):
        block = self.main_program.global_block()
        ordered_param_snapshot = []
351
        ring_id = -1
352 353 354
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_update_op(op):
                param = block.vars[op.input('Param')[0]]
355 356 357
                if param.is_distributed:
                    continue

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                snapshot = block.create_var(name=self.snapshot_name(param.name),
                                            shape=param.shape,
                                            persistable=True,
                                            stop_gradient=True,
                                            dtype=param.dtype)

                block._insert_op(idx + 1,
                                 type='elementwise_sub',
                                 inputs={
                                     'X': [snapshot],
                                     'Y': [param]
                                 },
                                 outputs={'Out': [param]},
                                 attrs={self.op_role_key: OpRole.Optimize})
                block._insert_op(idx + 2,
                                 type='c_sync_calc_stream',
                                 inputs={'X': param},
                                 outputs={'Out': param},
                                 attrs={self.op_role_key: OpRole.Optimize})
377
                ring_id = (ring_id + 1) % self.nrings
378 379 380 381 382 383 384 385
                block._insert_op(idx + 3,
                                 type='c_allreduce_sum',
                                 inputs={'X': [param]},
                                 outputs={'Out': [param]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Optimize
                                 })
386 387 388

                ordered_param_snapshot.append((param, snapshot))

389
        for ring_id in range(self.nrings):
390 391 392 393 394 395 396
            block.append_op(type='c_sync_comm_stream',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                self.op_role_key: OpRole.Optimize
                            })
397 398 399 400

        for param_snapshot in reversed(ordered_param_snapshot):
            param = param_snapshot[0]
            snapshot = param_snapshot[1]
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            block.append_op(type='scale',
                            inputs={'X': [param]},
                            outputs={'Out': [param]},
                            attrs={
                                'scale': 1.0 / self.nranks,
                                self.op_role_key: OpRole.Optimize
                            })
            block.append_op(type='elementwise_sub',
                            inputs={
                                'X': [snapshot],
                                'Y': [param]
                            },
                            outputs={'Out': [param]},
                            attrs={self.op_role_key: OpRole.Optimize})
            block.append_op(type='assign',
                            inputs={'X': [param]},
                            outputs={'Out': [snapshot]},
                            attrs={self.op_role_key: OpRole.Optimize})
H
hutuxian 已提交
419 420 421 422 423 424 425


class SingleProcessMultiThread(GradAllReduce):
    '''
    '''

    def __init__(self):
H
hutuxian 已提交
426
        GradAllReduce.__init__(self, 1)
H
hutuxian 已提交
427 428 429 430 431
        self.mode = "single_process_multi_thread"

    def _transpile_startup_program(self):
        block = self.startup_program.global_block()
        block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
432 433 434 435 436 437


class MultiThread(GradAllReduce):
    '''
    '''

D
danleifeng 已提交
438
    def __init__(self, nrings=1, trans_mode="all_reduce"):
439
        GradAllReduce.__init__(self, nrings)
D
danleifeng 已提交
440 441 442 443 444 445
        self.mode = "box"
        self.trans_mode = trans_mode
        self.fuse_grad_size_in_num = 128
        gpu_nums = os.getenv("FLAGS_selected_gpus",
                             "0,1,2,3,4,5,6,7,8").split(",")
        self.gpu_num = len(gpu_nums)
446 447 448 449 450 451 452 453

    def _transpile_startup_program(self):
        if len(self.endpoints) > 1:
            print("begin to _transpile_startup_program for multi-node")
            print("current_endpoint: ", self.current_endpoint)
            print("total endpoints: ", self.endpoints)
            print("rank: %d, ring_id: %d" % (self.rank, self.nrings))
            for ring_id in range(self.nrings):
454 455 456 457
                self._init_communicator(self.startup_program,
                                        self.current_endpoint, self.endpoints,
                                        self.rank, ring_id, self.wait_port,
                                        True)
458

459
        else:
F
Fan Zhang 已提交
460 461
            if "xpu" in self.trans_mode:
                print(
462 463
                    "begin to _transpile_startup_program for single-node in XPU"
                )
F
Fan Zhang 已提交
464 465
                block = self.startup_program.global_block()
                block.append_op(
466
                    type='c_comm_init_all',
F
Fan Zhang 已提交
467
                    attrs={
468 469
                        'devices':
                        list(
470 471
                            map(int,
                                os.getenv("FLAGS_selected_gpus").split(","))),
472 473
                        'ring_id':
                        0
F
Fan Zhang 已提交
474 475 476 477 478
                    })
            else:
                print("begin to _transpile_startup_program for single-node")
                block = self.startup_program.global_block()
                block.append_op(type='c_comm_init_all', attrs={'ring_id': 0})
D
danleifeng 已提交
479 480 481 482 483 484 485 486 487 488 489

    def _transpile_main_program(self):
        self._insert_scale_loss_grad_ops()
        if self.trans_mode == "all_gather":
            print("begin to transpile in all-gather mode")
            self.allgather_ranks = self.nranks * self.gpu_num
            self._insert_allgather_ops()
            self._update_adam_ops()
        elif self.trans_mode == "fuse_all_reduce":
            print("begin to transpile in fuse all-reduce mode")
            self._insert_fuse_allreduce_ops()
490 491 492 493 494
        elif self.trans_mode == "all_reduce_xpu" and len(
                os.getenv("FLAGS_selected_gpus").split(",")) == 1:
            print(
                "skip transpile in all-reduce-xpu mode when number of devices is only one"
            )
D
danleifeng 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        else:
            print("begin to transpile in all-reduce mode")
            self._insert_allreduce_ops()

    def _insert_allgather_ops(self):
        """
        insert allgather op to the main_program
        """
        block = self.main_program.global_block()
        ring_id = -1
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0

                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    new_grad_var = block.create_var(
                        name=op_role_var[i] + "_allgather",
                        shape=[self.allgather_ranks] + list(param.shape),
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True)
                    grad = block.vars[op_role_var[i + 1]]
                    if param.is_distributed:  # no need to care: used in PLSC
                        continue

                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={self.op_role_key: OpRole.Backward})
                        offset += 1

                    # As we search ops reversedly, we should insert c_allgather
                    # op in the same way to keep the ring_id alternate
                    ring_id = (ring_id + 1) % self.nrings
540 541 542 543 544 545 546 547 548
                    block._insert_op(offset,
                                     type='c_allgather',
                                     inputs={'X': grad},
                                     outputs={'Out': new_grad_var},
                                     attrs={
                                         'nranks': self.allgather_ranks,
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
549 550 551 552 553 554 555

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for ring_id in range(self.nrings):
556 557 558 559 560 561 562 563
                    block._insert_op(idx + ring_id,
                                     type='c_sync_comm_stream',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                break

    def _update_adam_ops(self):
        """
        remove the original adam op, and add new adam ops
        """
        block = self.main_program.global_block()

        for idx, op in reversed(list(enumerate(block.ops))):
            if self._is_optimizer_op(op):
                offset = idx
                if op.type != 'adam' and op.type != 'lamb':  # filter out scale op
                    continue
                param_name = op.input("Param")[0]
                inputs = {
                    "Param": block.vars[op.input("Param")[0]],
                    "LearningRate": block.vars[op.input("LearningRate")[0]],
                    "Moment1": block.vars[op.input("Moment1")[0]],
                    "Moment2": block.vars[op.input("Moment2")[0]],
                    "Beta1Pow": block.vars[op.input("Beta1Pow")[0]],
                    "Beta2Pow": block.vars[op.input("Beta2Pow")[0]]
                }
                outputs = {
                    "ParamOut": block.vars[op.output("ParamOut")[0]],
                    "Moment1Out": block.vars[op.output("Moment1Out")[0]],
                    "Moment2Out": block.vars[op.output("Moment2Out")[0]],
                    "Beta1PowOut": block.vars[op.output("Beta1PowOut")[0]],
                    "Beta2PowOut": block.vars[op.output("Beta2PowOut")[0]]
                }
                attrs = {
594 595 596 597 598 599 600 601
                    "epsilon":
                    op.attr('epsilon'),
                    "beta1":
                    op.attr('beta1'),
                    "beta2":
                    op.attr('beta2'),
                    "lazy_mode":
                    op.attr('lazy_mode'),
D
danleifeng 已提交
602 603 604 605 606 607 608 609 610 611 612
                    "min_row_size_to_use_multithread":
                    op.attr('min_row_size_to_use_multithread')
                }
                split_vars = [
                    block.create_var(
                        name=param_name + "_" + str(i),
                        shape=block.vars[op.input("Param")[0]].shape,
                        persistable=False,
                        dtype=core.VarDesc.VarType.FP32,
                        stop_gradient=True) for i in range(self.allgather_ranks)
                ]
613 614 615 616 617 618 619 620 621 622 623 624
                block._insert_op(offset,
                                 type="split",
                                 inputs={
                                     'X':
                                     block.vars[op.input("Param")[0] +
                                                "_allgather"]
                                 },
                                 outputs={'Out': split_vars},
                                 attrs={
                                     'num': self.allgather_ranks,
                                     'axis': 0
                                 })
D
danleifeng 已提交
625 626 627 628
                offset += 1

                for i in range(self.allgather_ranks):
                    inputs["Grad"] = split_vars[i]
629 630 631 632 633
                    block._insert_op(offset,
                                     type=op.type,
                                     inputs=inputs,
                                     outputs=outputs,
                                     attrs=attrs)
D
danleifeng 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
                    offset += 1
                # remove the original adam op
                block._remove_op(offset)

    def _insert_fuse_allreduce_ops(self):
        """
        insert coalesce_tensor and all reduce ops
        """
        block = self.main_program.global_block()
        ring_id = 0 % self.nrings
        grad = None
        param_grads = []
        # find all grad params
        for op in reversed(block.ops):
            if self._is_backward_op(op) and \
                    self.op_role_var_key in op.attr_names:
                op_role_var = op.all_attrs()[self.op_role_var_key]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0, "vars need to be one param var followed by one grad var, " \
                                                  "but got odd number of vars"
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    param_grads.append(grad)
        if grad is None:
            return

        segments = []
        last_dtype = None
        # split the grad based on dtype and fused size
        for var in param_grads:
            if len(segments) == 0 \
                    or len(segments[-1]) == self.fuse_grad_size_in_num \
                    or var.dtype != last_dtype:
                segments.append([var])
                last_dtype = var.dtype
            else:
                segments[-1].append(var)

        fused_vars = []
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for segment in segments:
                    # insert coalesce tensor
683 684 685 686 687
                    tmp_var = block.create_var(name=unique_name.generate(
                        'FusedOutput_{}'.format(segment[0].name)),
                                               dtype=segment[0].dtype,
                                               persistable=False,
                                               stop_gradient=True)
D
danleifeng 已提交
688
                    fused_vars.append(tmp_var)
689 690 691 692 693 694 695 696 697 698 699 700 701
                    block._insert_op(idx,
                                     type="coalesce_tensor",
                                     inputs={"Input": segment},
                                     outputs={
                                         "Output": segment,
                                         "FusedOutput": tmp_var
                                     },
                                     attrs={
                                         "copy_data": True,
                                         "use_align": True,
                                         "dtype": segment[0].dtype,
                                         self.op_role_key: OpRole.Backward
                                     })
D
danleifeng 已提交
702 703 704 705 706 707
                break

        # insert the allreduce_sum op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
                for fused_var in fused_vars:
708 709 710 711 712 713 714 715 716 717 718 719 720 721
                    block._insert_op(idx,
                                     type='c_allreduce_sum',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={
                                         'ring_id': ring_id,
                                         'use_calc_stream': False,
                                         self.op_role_key: OpRole.Backward
                                     })
                    block._insert_op(idx,
                                     type='c_sync_calc_stream',
                                     inputs={'X': fused_var},
                                     outputs={'Out': fused_var},
                                     attrs={self.op_role_key: OpRole.Backward})
D
danleifeng 已提交
722 723 724 725 726 727 728 729 730
                break

        if len(fused_vars) == 0:
            block._sync_with_cpp()
            return

        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if self._is_optimizer_op(op):
731 732 733 734 735 736 737 738
                block._insert_op(idx,
                                 type='c_sync_comm_stream',
                                 inputs={'X': fused_vars[0]},
                                 outputs={'Out': fused_vars[0]},
                                 attrs={
                                     'ring_id': ring_id,
                                     self.op_role_key: OpRole.Backward
                                 })
D
danleifeng 已提交
739 740
                break
        block._sync_with_cpp()