test_functional_conv2d_transpose.py 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
F
From00 已提交
16 17
import unittest
import numpy as np
18 19
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
F
From00 已提交
20 21 22
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid.framework import _test_eager_guard
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from unittest import TestCase


class TestFunctionalConv2D(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
50 51
            -1, 1, (self.in_channels, self.out_channels // self.groups) +
            filter_shape).astype(self.dtype)
52
        if not self.no_bias:
53 54
            self.bias = np.random.uniform(-1, 1, (self.out_channels, )).astype(
                self.dtype)
55 56 57 58 59 60

        self.channel_last = (self.data_format == "NHWC")
        if self.channel_last:
            self.input_shape = (self.batch_size, ) + self.spatial_shape + (
                self.in_channels, )
        else:
61 62
            self.input_shape = (self.batch_size,
                                self.in_channels) + self.spatial_shape
63 64 65 66 67 68 69 70 71 72

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
73 74
                    x = fluid.data("input", (-1, -1, -1, self.in_channels),
                                   dtype=self.dtype)
75
                else:
76 77
                    x = fluid.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                y = fluid.layers.conv2d_transpose(
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
                    if self.no_bias else I.NumpyArrayInitializer(self.bias),
                    data_format=self.data_format)
        exe = fluid.Executor(self.place)
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
102 103
                    x = x = fluid.data("input", (-1, -1, -1, self.in_channels),
                                       dtype=self.dtype)
104
                else:
105 106 107 108 109
                    x = fluid.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
                weight = fluid.data("weight",
                                    self.weight.shape,
                                    dtype=self.dtype)
110 111
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
112 113 114 115 116 117 118 119 120
                y = F.conv2d_transpose(x,
                                       weight,
                                       None if self.no_bias else bias,
                                       output_size=self.output_size,
                                       padding=self.padding,
                                       stride=self.stride,
                                       dilation=self.dilation,
                                       groups=self.groups,
                                       data_format=self.data_format)
121 122 123 124 125 126 127 128 129 130 131 132 133
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
        out, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
134 135 136 137 138 139 140 141 142
            y = F.conv2d_transpose(x,
                                   weight,
                                   bias,
                                   output_size=self.output_size,
                                   padding=self.padding,
                                   stride=self.stride,
                                   dilation=self.dilation,
                                   groups=self.groups,
                                   data_format=self.data_format)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

F
From00 已提交
158 159 160 161
    def test_identity_cpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_cpu()

162 163 164 165 166 167
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()

F
From00 已提交
168 169 170 171 172 173
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_gpu()

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

class TestFunctionalConv2DError(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)
202 203
        self.weight_shape = (self.in_channels,
                             self.out_channels // self.groups) + filter_shape
204 205 206 207 208 209 210 211 212
        self.bias_shape = (self.out_channels, )

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NHWC"
                if self.channel_last:
213 214
                    x = x = fluid.data("input", (-1, -1, -1, self.in_channels),
                                       dtype=self.dtype)
215
                else:
216 217 218 219 220
                    x = fluid.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
                weight = fluid.data("weight",
                                    self.weight_shape,
                                    dtype=self.dtype)
221 222
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
223 224 225 226 227 228 229 230 231
                y = F.conv2d_transpose(x,
                                       weight,
                                       None if self.no_bias else bias,
                                       output_size=self.output_size,
                                       padding=self.padding,
                                       stride=self.stride,
                                       dilation=self.dilation,
                                       groups=self.groups,
                                       data_format=self.data_format)
232 233 234


class TestFunctionalConv2DCase2(TestFunctionalConv2D):
235

236 237 238 239 240 241 242 243 244 245 246 247 248
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase3(TestFunctionalConv2D):
249

250 251 252 253 254 255 256 257 258 259 260 261 262
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = True
        self.data_format = "NCHW"


class TestFunctionalConv2DCase4(TestFunctionalConv2D):
263

264 265 266 267 268 269 270 271 272 273 274 275 276
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase5(TestFunctionalConv2D):
277

278 279 280 281 282 283 284 285 286 287 288 289 290
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase6(TestFunctionalConv2D):
291

292 293 294 295 296 297 298 299 300 301 302 303 304
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = (2, 1)
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase7(TestFunctionalConv2D):
305

306 307 308 309 310 311 312 313 314 315 316 317 318
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase8(TestFunctionalConv2D):
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = [18, 34]
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase9(TestFunctionalConv2D):
334

335 336 337 338 339 340 341 342 343 344 345 346 347
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase10(TestFunctionalConv2D):
348

349 350 351 352 353 354 355 356 357 358 359 360 361
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase11(TestFunctionalConv2D):
362

363 364 365 366 367 368 369 370 371 372 373 374 375
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase12(TestFunctionalConv2D):
376

377 378 379 380 381 382 383 384 385 386 387 388 389
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
390

391 392 393 394 395 396 397 398 399 400 401 402 403
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
404

405 406 407 408 409 410 411 412 413 414 415 416 417
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
418

419 420 421 422 423 424 425 426 427 428 429 430 431
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
432

433 434 435 436 437 438 439 440 441 442 443 444 445
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
461

462 463 464 465 466 467 468 469 470 471 472 473 474
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "not_valid"


class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
475

476 477 478 479 480 481 482 483 484 485 486 487
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


488
class TestFunctionalConv2DErrorCase10(TestCase):
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
508 509 510 511 512 513 514 515 516 517 518 519 520
                y = fluid.layers.conv2d(x,
                                        self.num_filters,
                                        self.filter_size,
                                        stride=self.stride,
                                        padding=self.padding,
                                        dilation=self.dilation,
                                        groups=self.groups,
                                        param_attr=I.NumpyArrayInitializer(
                                            self.filter),
                                        bias_attr=False if self.bias is None
                                        else I.NumpyArrayInitializer(self.bias),
                                        act=None,
                                        data_format=self.data_format)
521 522 523 524 525 526 527 528 529 530 531
        exe = fluid.Executor()
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
            b = None if self.bias is None else dg.to_variable(
                self.bias, dtype=paddle.float32)
532 533 534 535 536 537 538 539
            y = F.conv2d_transpose(x,
                                   w,
                                   b,
                                   padding=self.padding,
                                   stride=self.stride,
                                   dilation=self.dilation,
                                   groups=self.groups,
                                   data_format=self.data_format)
540 541 542 543 544

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

F
From00 已提交
545 546 547 548
    def test_dygraph_exception_check_eager(self):
        with _test_eager_guard():
            self.test_dygraph_exception()

549 550 551 552 553 554
    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DErrorCase10):
555

556 557 558 559 560 561 562 563 564 565 566 567 568
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCHW"


569 570
if __name__ == "__main__":
    unittest.main()