test_functional_conv2d_transpose.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
F
From00 已提交
16 17
import unittest
import numpy as np
18 19
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
F
From00 已提交
20 21 22
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid.framework import _test_eager_guard
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
from unittest import TestCase


class TestFunctionalConv2D(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
            -1, 1, (self.in_channels, self.out_channels // self.groups
                    ) + filter_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(-1, 1, (
                self.out_channels, )).astype(self.dtype)

        self.channel_last = (self.data_format == "NHWC")
        if self.channel_last:
            self.input_shape = (self.batch_size, ) + self.spatial_shape + (
                self.in_channels, )
        else:
            self.input_shape = (self.batch_size, self.in_channels
                                ) + self.spatial_shape

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                y = fluid.layers.conv2d_transpose(
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
                    if self.no_bias else I.NumpyArrayInitializer(self.bias),
                    data_format=self.data_format)
        exe = fluid.Executor(self.place)
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
115
                y = F.conv2d_transpose(
116 117 118 119 120 121 122 123
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
124
                    data_format=self.data_format)
125 126 127 128 129 130 131 132 133 134 135 136 137
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
        out, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
138
            y = F.conv2d_transpose(
139 140 141 142 143 144 145 146
                x,
                weight,
                bias,
                output_size=self.output_size,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
L
LielinJiang 已提交
147
                data_format=self.data_format)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

F
From00 已提交
163 164 165 166
    def test_identity_cpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_cpu()

167 168 169 170 171 172
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()

F
From00 已提交
173 174 175 176 177 178
    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_gpu()

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

class TestFunctionalConv2DError(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)
        self.weight_shape = (self.in_channels, self.out_channels // self.groups
                             ) + filter_shape
        self.bias_shape = (self.out_channels, )

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NHWC"
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
229
                y = F.conv2d_transpose(
230 231 232 233 234 235 236 237
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
238
                    data_format=self.data_format)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476


class TestFunctionalConv2DCase2(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase3(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = True
        self.data_format = "NCHW"


class TestFunctionalConv2DCase4(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase5(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase6(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = (2, 1)
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase7(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase8(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = [18, 34]
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase9(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase10(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase11(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase12(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "not_valid"


class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
class TestFunctionalConv2DErrorCase10(TestCase):
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
                y = fluid.layers.conv2d(
                    x,
                    self.num_filters,
                    self.filter_size,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.filter),
                    bias_attr=False if self.bias is None else
                    I.NumpyArrayInitializer(self.bias),
                    act=None,
                    data_format=self.data_format)
        exe = fluid.Executor()
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
            b = None if self.bias is None else dg.to_variable(
                self.bias, dtype=paddle.float32)
            y = F.conv2d_transpose(
                x,
                w,
                b,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format)

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

F
From00 已提交
534 535 536 537
    def test_dygraph_exception_check_eager(self):
        with _test_eager_guard():
            self.test_dygraph_exception()

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DErrorCase10):
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCHW"


557 558
if __name__ == "__main__":
    unittest.main()