test_functional_conv2d_transpose.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase


class TestFunctionalConv2D(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
            -1, 1, (self.in_channels, self.out_channels // self.groups
                    ) + filter_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(-1, 1, (
                self.out_channels, )).astype(self.dtype)

        self.channel_last = (self.data_format == "NHWC")
        if self.channel_last:
            self.input_shape = (self.batch_size, ) + self.spatial_shape + (
                self.in_channels, )
        else:
            self.input_shape = (self.batch_size, self.in_channels
                                ) + self.spatial_shape

        self.input = np.random.uniform(-1, 1,
                                       self.input_shape).astype(self.dtype)

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                y = fluid.layers.conv2d_transpose(
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
                    if self.no_bias else I.NumpyArrayInitializer(self.bias),
                    data_format=self.data_format)
        exe = fluid.Executor(self.place)
        exe.run(start)
        out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
114
                y = F.conv2d_transpose(
115 116 117 118 119 120 121 122
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
123
                    data_format=self.data_format)
124 125 126 127 128 129 130 131 132 133 134 135 136
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
        out, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
137
            y = F.conv2d_transpose(
138 139 140 141 142 143 144 145
                x,
                weight,
                bias,
                output_size=self.output_size,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
L
LielinJiang 已提交
146
                data_format=self.data_format)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

    @unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()


class TestFunctionalConv2DError(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
            filter_shape = (self.filter_shape, ) * 2
        else:
            filter_shape = tuple(self.filter_shape)
        self.weight_shape = (self.in_channels, self.out_channels // self.groups
                             ) + filter_shape
        self.bias_shape = (self.out_channels, )

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NHWC"
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
218
                y = F.conv2d_transpose(
219 220 221 222 223 224 225 226
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
L
LielinJiang 已提交
227
                    data_format=self.data_format)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467


class TestFunctionalConv2DCase2(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase3(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = True
        self.data_format = "NCHW"


class TestFunctionalConv2DCase4(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase5(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase6(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = (2, 1)
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase7(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase8(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = [18, 34]
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase9(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase10(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase11(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase12(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "not_valid"


class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


if __name__ == "__main__":
    unittest.main()