test_elementwise_min_op.py 8.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
S
sneaxiy 已提交
20 21 22 23 24
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

paddle.enable_static()
F
fengjiayi 已提交
25 26 27


class TestElementwiseOp(OpTest):
28

F
fengjiayi 已提交
29 30
    def setUp(self):
        self.op_type = "elementwise_min"
31
        self.python_api = paddle.minimum
F
fengjiayi 已提交
32
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
33 34
        # So we generate test data by the following method
        # to avoid them being too close to each other.
35 36 37
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
38 39 40 41
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
42 43 44 45
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
46 47

    def test_check_grad_normal(self):
48 49 50 51
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
52 53

    def test_check_grad_ingore_x(self):
54 55 56 57
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
F
fengjiayi 已提交
58 59

    def test_check_grad_ingore_y(self):
60 61 62 63
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
F
fengjiayi 已提交
64 65


66 67
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
68
class TestElementwiseMinOp_scalar(TestElementwiseOp):
69

70 71
    def setUp(self):
        self.op_type = "elementwise_min"
72
        self.python_api = paddle.minimum
73 74
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
75 76 77 78
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


79
class TestElementwiseMinOp_Vector(TestElementwiseOp):
80

F
fengjiayi 已提交
81 82
    def setUp(self):
        self.op_type = "elementwise_min"
83
        self.python_api = paddle.minimum
84 85 86
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
87 88 89 90
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


91
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
92

F
fengjiayi 已提交
93 94
    def setUp(self):
        self.op_type = "elementwise_min"
95
        self.python_api = paddle.minimum
96 97
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
98
        y = x[:, 0, 0] + sgn * \
99
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
100 101 102 103
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
104 105
            'Out': np.minimum(self.inputs['X'],
                              self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
106 107 108
        }


109
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
110

F
fengjiayi 已提交
111 112
    def setUp(self):
        self.op_type = "elementwise_min"
113
        self.python_api = paddle.minimum
114 115
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
116
        y = x[0, :, 0] + sgn * \
117
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
118 119 120 121
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
122 123
            'Out': np.minimum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
124 125 126
        }


127
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
128

F
fengjiayi 已提交
129 130
    def setUp(self):
        self.op_type = "elementwise_min"
131
        self.python_api = paddle.minimum
132 133
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
134
        y = x[0, 0, :] + sgn * \
135
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
136 137 138
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
139 140
            'Out': np.minimum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
141 142 143
        }


144
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
145

F
fengjiayi 已提交
146 147
    def setUp(self):
        self.op_type = "elementwise_min"
148
        self.python_api = paddle.minimum
149 150
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
F
fengjiayi 已提交
151
        y = x[0, :, :, 0] + sgn * \
152
            np.random.uniform(1, 2, (25, 4)).astype(np.float64)
F
fengjiayi 已提交
153 154 155 156 157
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
158
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1))
F
fengjiayi 已提交
159 160 161
        }


162
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
163

164 165
    def setUp(self):
        self.op_type = "elementwise_min"
166
        self.python_api = paddle.minimum
167 168
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
169
        y = x + sgn * \
170
            np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
171 172 173 174 175
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
176
class TestElementwiseMinOpFP16(unittest.TestCase):
177

S
sneaxiy 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
            z = fluid.layers.elementwise_min(x, y, axis)
            x_g, y_g = paddle.grad([z], [x, y])
            return z.numpy().astype(dtype), x_g.numpy().astype(
                dtype), y_g.numpy().astype(dtype)

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

        z_1, x_g_1, y_g_1 = self.get_out_and_grad(x_np, y_np, axis, place,
                                                  False)
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
        self.assertTrue(np.array_equal(z_1, z_2), "{} vs {}".format(z_1, z_2))
210 211 212 213
        self.assertTrue(np.array_equal(x_g_1, x_g_2),
                        "{} vs {}".format(x_g_1, x_g_2))
        self.assertTrue(np.array_equal(y_g_1, y_g_2),
                        "{} vs {}".format(y_g_1, y_g_2))
S
sneaxiy 已提交
214 215 216 217 218 219 220 221 222 223 224 225

    def test_main(self):
        self.check_main((13, 17), (13, 17))
        self.check_main((10, 3, 4), (1, ))
        self.check_main((100, ), (100, ))
        self.check_main((100, 3, 2), (100, ), 0)
        self.check_main((2, 100, 3), (100, ), 1)
        self.check_main((2, 3, 100), (100, ))
        self.check_main((2, 25, 4, 1), (25, 4), 1)
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
226 227
if __name__ == '__main__':
    unittest.main()