test_recognize_digits.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
28

P
pangyoki 已提交
29 30
paddle.enable_static()

Y
Yang Yu 已提交
31 32 33 34 35 36
BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
37
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
38 39
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
40 41 42 43 44 45 46 47 48


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
49 50 51 52 53 54
    conv_pool_1 = fluid.nets.simple_img_conv_pool(input=img,
                                                  filter_size=5,
                                                  num_filters=20,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yang(Tony) 已提交
55
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
56 57 58 59 60 61
    conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1,
                                                  filter_size=5,
                                                  num_filters=50,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
Y
Yang Yu 已提交
62 63 64
    return loss_net(conv_pool_2, label)


65 66 67 68
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
69
          save_full_dirname=None,
70
          model_filename=None,
武毅 已提交
71 72
          params_filename=None,
          is_local=True):
73 74
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
75 76 77
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

78
    if nn_type == 'mlp':
Y
Yang Yu 已提交
79 80 81 82
        net_conf = mlp
    else:
        net_conf = conv_net

83
    if parallel:
X
Xin Pan 已提交
84
        raise NotImplementedError()
Y
Yang Yu 已提交
85
    else:
L
Liu Yiqun 已提交
86
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
87

88
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
89

X
Xin Pan 已提交
90
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
91
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
92

93
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
94 95 96

    exe = fluid.Executor(place)

97 98 99 100 101
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=500),
                                batch_size=BATCH_SIZE)
    test_reader = paddle.batch(paddle.dataset.mnist.test(),
                               batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
102 103
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
Q
Qi Li 已提交
125 126
                    if float(acc_val) > 0.2 or pass_id == (PASS_NUM - 1):
                        # Smaller value to increase CI speed
武毅 已提交
127 128 129 130 131 132
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
133 134
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
135
                                save_full_dirname, [], [],
X
Xin Pan 已提交
136 137 138 139
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
140 141
                        return
                    else:
142
                        print(
143 144 145
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                            .format(pass_id, batch_id + 1, float(avg_loss_val),
                                    float(acc_val)))
武毅 已提交
146 147 148 149 150 151 152
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
153 154
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
155 156 157 158
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
159
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
160
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
161 162
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
163
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
164
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
165 166 167 168 169 170 171 172
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
173 174


175 176 177 178
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
179 180 181
    if save_dirname is None:
        return

182
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
183 184
    exe = fluid.Executor(place)

185 186 187 188 189 190
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
191
        [inference_program, feed_target_names,
192 193 194
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe,
                                                        model_filename,
                                                        params_filename)
195 196 197 198 199 200 201 202 203 204 205 206

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
207
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
208 209


210
def main(use_cuda, parallel, nn_type, combine):
211
    save_dirname = None
X
Xin Pan 已提交
212
    save_full_dirname = None
213 214
    model_filename = None
    params_filename = None
215 216
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
217
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
218
        if combine == True:
219 220
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
221

武毅 已提交
222
    # call train() with is_local argument to run distributed train
223 224 225 226 227 228 229 230 231 232 233
    train(nn_type=nn_type,
          use_cuda=use_cuda,
          parallel=parallel,
          save_dirname=save_dirname,
          save_full_dirname=save_full_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
    infer(use_cuda=use_cuda,
          save_dirname=save_dirname,
          model_filename=model_filename,
          params_filename=params_filename)
234 235 236 237 238 239


class TestRecognizeDigits(unittest.TestCase):
    pass


240
def inject_test_method(use_cuda, parallel, nn_type, combine):
241

242 243 244 245 246 247
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
248
                main(use_cuda, parallel, nn_type, combine)
249

250 251 252
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda' if use_cuda else 'cpu',
                                       'parallel' if parallel else 'normal',
                                       'combine' if combine else 'separate')
253 254 255 256 257 258

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
259 260
        if use_cuda and not core.is_compiled_with_cuda():
            continue
X
fix  
Xin Pan 已提交
261
        for parallel in (False, ):
262
            for nn_type in ('mlp', 'conv'):
263 264
                inject_test_method(use_cuda, parallel, nn_type, True)

265
    # Two unit-test for saving parameters as separate files
266
    inject_test_method(False, False, 'mlp', False)
267
    inject_test_method(False, False, 'conv', False)
268 269 270 271 272 273


inject_all_tests()

if __name__ == '__main__':
    unittest.main()