pool_op_plugin.cu 11.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
F
From00 已提交
16
#include "paddle/phi/kernels/funcs/pooling.h"
N
nhzlx 已提交
17 18 19 20

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
21
namespace plugin {
N
nhzlx 已提交
22

23
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
24
                                               const nvinfer1::Dims *inputDims,
25
                                               int nbInputs) TRT_NOEXCEPT {
N
nhzlx 已提交
26 27 28
  assert(nbInputs == 1);
  assert(index == 0);
  assert(inputDims[0].nbDims == 3);
29
  nvinfer1::Dims const &input_dims = inputDims[0];
N
nhzlx 已提交
30 31 32 33 34 35 36 37

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  return output_dims;
}

F
feng_shuai 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
size_t PoolPlugin::getSerializationSize() const TRT_NOEXCEPT {
  return getBaseSerializationSize() + SerializedSize(ceil_mode_) +
         SerializedSize(pool_type_) + SerializedSize(adaptive_) +
         SerializedSize(exclusive_) + SerializedSize(ksize_) +
         SerializedSize(strides_) + SerializedSize(paddings_) +
         SerializedSize(real_paddings_) + SerializedSize(input_shape_) +
         SerializedSize(output_shape_);
}

// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void PoolPlugin::serialize(void *buffer) const TRT_NOEXCEPT {
  serializeBase(buffer);
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_);
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, exclusive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, real_paddings_);
  SerializeValue(&buffer, input_shape_);
  SerializeValue(&buffer, output_shape_);
}

PoolPlugin *PoolPlugin::clone() const TRT_NOEXCEPT {
  return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, exclusive_, ksize_,
                        strides_, paddings_, input_shape_, real_paddings_);
}

68
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
69
#if IS_TRT_VERSION_LT(8000)
70 71
                        void **outputs, void *workspace,
                        cudaStream_t stream) TRT_NOEXCEPT {
72 73
#else
                        void *const *outputs, void *workspace,
74
                        cudaStream_t stream) TRT_NOEXCEPT {
75
#endif
76
  auto const &input_dims = this->getInputDims(0);
N
nhzlx 已提交
77
  int input_size = 0;
78
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
79
  float *const *odatas = reinterpret_cast<float *const *>(outputs);
N
nhzlx 已提交
80 81 82 83 84 85

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

86
  if (pool_type_ == PoolType::max) {
F
From00 已提交
87 88
    phi::funcs::MaxPool<float> pool_process;
    phi::funcs::Pool2dDirectCUDAFunctor<phi::funcs::MaxPool<float>, float>
89 90
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
F
feng_shuai 已提交
91
                   paddings_, true, false, odatas[0], stream, pool_process);
92
  } else if (pool_type_ == PoolType::avg) {
F
From00 已提交
93 94
    phi::funcs::AvgPool<float> pool_process;
    phi::funcs::Pool2dDirectCUDAFunctor<phi::funcs::AvgPool<float>, float>
95 96
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
F
feng_shuai 已提交
97 98
                   paddings_, exclusive_, adaptive_, odatas[0], stream,
                   pool_process);
99
  }
N
nhzlx 已提交
100 101 102 103

  return cudaGetLastError() != cudaSuccess;
}

104 105 106
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

107 108 109 110 111 112 113
PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
                                     size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &ceil_mode_);
  const char *pool_type;
  DeserializeValue(&serialData, &serialLength, &pool_type);
  pool_type_ = std::string(pool_type);
  DeserializeValue(&serialData, &serialLength, &adaptive_);
F
feng_shuai 已提交
114
  DeserializeValue(&serialData, &serialLength, &exclusive_);
115 116 117 118 119 120
  DeserializeValue(&serialData, &serialLength, &ksize_);
  DeserializeValue(&serialData, &serialLength, &strides_);
  DeserializeValue(&serialData, &serialLength, &paddings_);
  DeserializeValue(&serialData, &serialLength, &is_global_);
}

121
size_t PoolPluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
122
  return SerializedSize(ceil_mode_) + SerializedSize(pool_type_.c_str()) +
F
feng_shuai 已提交
123 124 125
         SerializedSize(adaptive_) + SerializedSize(exclusive_) +
         SerializedSize(ksize_) + SerializedSize(strides_) +
         SerializedSize(paddings_) + SerializedSize(is_global_);
126
}
127

128
void PoolPluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
129 130 131
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_.c_str());
  SerializeValue(&buffer, adaptive_);
F
feng_shuai 已提交
132
  SerializeValue(&buffer, exclusive_);
133 134 135 136 137
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, is_global_);
}
138

F
feng_shuai 已提交
139 140 141 142 143
nvinfer1::IPluginV2DynamicExt *PoolPluginDynamic::clone() const TRT_NOEXCEPT {
  return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, exclusive_,
                               ksize_, strides_, paddings_, is_global_);
}

144 145
nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
146
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
147 148 149 150 151 152 153 154 155
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
F
feng_shuai 已提交
156
  if (is_global_ && !adaptive_) {
157 158 159 160
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    return output;
  }
F
feng_shuai 已提交
161 162 163
  if (is_global_ && adaptive_) {
    return inputs[0];
  }
164 165 166 167 168 169 170 171
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
Z
Zhaolong Xing 已提交
172
  auto one_value = expr_builder.constant(1);
173

Z
Zhaolong Xing 已提交
174 175
  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
176

Z
Zhaolong Xing 已提交
177 178 179 180
  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
181 182

  if (!ceil_mode_) {
Z
Zhaolong Xing 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);

200
  } else {
Z
Zhaolong Xing 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
217 218 219 220 221 222 223
  }

  return output;
}

bool PoolPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
224
    int nb_outputs) TRT_NOEXCEPT {
225 226 227 228 229 230 231 232 233 234 235 236
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
237
          in_out[pos].format == nvinfer1::PluginFormat::kLINEAR);
238 239 240
}

nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
241 242
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
243 244 245 246 247 248 249 250 251 252 253 254 255
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                               const nvinfer1::PluginTensorDesc *output_desc,
                               const void *const *inputs, void *const *outputs,
256 257
                               void *workspace,
                               cudaStream_t stream) TRT_NOEXCEPT {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int h = input_dims.d[2];
  int w = input_dims.d[3];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = h;
    ksize[1] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
  } else {
    auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
  }
F
feng_shuai 已提交
287 288 289 290
  if (adaptive_) {
    output_shape[2] = h;
    output_shape[3] = w;
  }
291 292

  if (pool_type_ == "max") {
F
From00 已提交
293 294
    phi::funcs::MaxPool<float> pool_process;
    phi::funcs::Pool2dDirectCUDAFunctor<phi::funcs::MaxPool<float>, float>
295 296
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
F
feng_shuai 已提交
297
                   true, false, output, stream, pool_process);
298
  } else if (pool_type_ == "avg") {
F
From00 已提交
299 300
    phi::funcs::AvgPool<float> pool_process;
    phi::funcs::Pool2dDirectCUDAFunctor<phi::funcs::AvgPool<float>, float>
301 302
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
F
feng_shuai 已提交
303
                   exclusive_, adaptive_, output, stream, pool_process);
304 305 306 307 308 309
  }

  return cudaGetLastError() != cudaSuccess;
}
#endif

N
nhzlx 已提交
310
}  // namespace plugin
N
nhzlx 已提交
311 312 313
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle