pool_op_plugin.cu 9.2 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
16
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
17 18 19 20 21
#include "paddle/fluid/operators/math/pooling.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
22
namespace plugin {
N
nhzlx 已提交
23

24
PoolPlugin *CreatePoolPluginDeserialize(const void *buffer, size_t length) {
25
  return new PoolPlugin(buffer, length);
N
nhzlx 已提交
26
}
27
REGISTER_TRT_PLUGIN("pool_plugin", CreatePoolPluginDeserialize);
N
nhzlx 已提交
28

29
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
30
                                               const nvinfer1::Dims *inputDims,
31
                                               int nbInputs) {
N
nhzlx 已提交
32 33 34
  assert(nbInputs == 1);
  assert(index == 0);
  assert(inputDims[0].nbDims == 3);
35
  nvinfer1::Dims const &input_dims = inputDims[0];
N
nhzlx 已提交
36 37 38 39 40 41 42 43

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  return output_dims;
}

44 45 46
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
                        void **outputs, void *workspace, cudaStream_t stream) {
  auto const &input_dims = this->getInputDims(0);
N
nhzlx 已提交
47
  int input_size = 0;
48 49
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
  float **odatas = reinterpret_cast<float **>(outputs);
N
nhzlx 已提交
50 51 52 53 54 55

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

56 57 58 59 60 61
  if (pool_type_ == PoolType::max) {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
62
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
63 64 65 66 67 68
  } else if (pool_type_ == PoolType::avg) {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
69
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
70
  }
N
nhzlx 已提交
71 72 73 74

  return cudaGetLastError() != cudaSuccess;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

size_t PoolPluginDynamic::getSerializationSize() const { return 0; }

void PoolPluginDynamic::serialize(void *buffer) const {}

nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
    nvinfer1::IExprBuilder &expr_builder) {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
  if (is_global_) {
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    return output;
  }
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
Z
Zhaolong Xing 已提交
107
  auto one_value = expr_builder.constant(1);
108

Z
Zhaolong Xing 已提交
109 110
  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
111

Z
Zhaolong Xing 已提交
112 113 114 115
  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
116 117

  if (!ceil_mode_) {
Z
Zhaolong Xing 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);

135
  } else {
Z
Zhaolong Xing 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  }

  return output;
}

bool PoolPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
          in_out[pos].format == nvinfer1::PluginFormat::kNCHW);
}

nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                               const nvinfer1::PluginTensorDesc *output_desc,
                               const void *const *inputs, void *const *outputs,
                               void *workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int h = input_dims.d[2];
  int w = input_dims.d[3];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = h;
    ksize[1] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
  } else {
    auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
  }

  if (pool_type_ == "max") {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
227
                   true, adaptive_, output, stream, pool_process);
228 229 230 231 232 233
  } else if (pool_type_ == "avg") {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
234
                   true, adaptive_, output, stream, pool_process);
235 236 237 238 239 240
  }

  return cudaGetLastError() != cudaSuccess;
}
#endif

N
nhzlx 已提交
241
}  // namespace plugin
N
nhzlx 已提交
242 243 244
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle