pool_op_plugin.cu 12.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
16 17 18 19 20
#include "paddle/fluid/operators/math/pooling.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
21
namespace plugin {
N
nhzlx 已提交
22

23
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
24
                                               const nvinfer1::Dims *inputDims,
25
                                               int nbInputs) TRT_NOEXCEPT {
N
nhzlx 已提交
26 27 28
  assert(nbInputs == 1);
  assert(index == 0);
  assert(inputDims[0].nbDims == 3);
29
  nvinfer1::Dims const &input_dims = inputDims[0];
N
nhzlx 已提交
30 31 32 33 34 35 36 37

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  return output_dims;
}

F
feng_shuai 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
size_t PoolPlugin::getSerializationSize() const TRT_NOEXCEPT {
  return getBaseSerializationSize() + SerializedSize(ceil_mode_) +
         SerializedSize(pool_type_) + SerializedSize(adaptive_) +
         SerializedSize(exclusive_) + SerializedSize(ksize_) +
         SerializedSize(strides_) + SerializedSize(paddings_) +
         SerializedSize(real_paddings_) + SerializedSize(input_shape_) +
         SerializedSize(output_shape_);
}

// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void PoolPlugin::serialize(void *buffer) const TRT_NOEXCEPT {
  serializeBase(buffer);
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_);
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, exclusive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, real_paddings_);
  SerializeValue(&buffer, input_shape_);
  SerializeValue(&buffer, output_shape_);
}

PoolPlugin *PoolPlugin::clone() const TRT_NOEXCEPT {
  return new PoolPlugin(ceil_mode_, pool_type_, adaptive_, exclusive_, ksize_,
                        strides_, paddings_, input_shape_, real_paddings_);
}

68
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
69
#if IS_TRT_VERSION_LT(8000)
70 71
                        void **outputs, void *workspace,
                        cudaStream_t stream) TRT_NOEXCEPT {
72 73
#else
                        void *const *outputs, void *workspace,
74
                        cudaStream_t stream) TRT_NOEXCEPT {
75
#endif
76
  auto const &input_dims = this->getInputDims(0);
N
nhzlx 已提交
77
  int input_size = 0;
78
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
79
  float *const *odatas = reinterpret_cast<float *const *>(outputs);
N
nhzlx 已提交
80 81 82 83 84 85

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

86 87 88 89 90 91
  if (pool_type_ == PoolType::max) {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
F
feng_shuai 已提交
92
                   paddings_, true, false, odatas[0], stream, pool_process);
93 94 95 96 97 98
  } else if (pool_type_ == PoolType::avg) {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
F
feng_shuai 已提交
99 100
                   paddings_, exclusive_, adaptive_, odatas[0], stream,
                   pool_process);
101
  }
N
nhzlx 已提交
102 103 104 105

  return cudaGetLastError() != cudaSuccess;
}

106 107 108
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

109 110 111 112 113 114 115
PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
                                     size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &ceil_mode_);
  const char *pool_type;
  DeserializeValue(&serialData, &serialLength, &pool_type);
  pool_type_ = std::string(pool_type);
  DeserializeValue(&serialData, &serialLength, &adaptive_);
F
feng_shuai 已提交
116
  DeserializeValue(&serialData, &serialLength, &exclusive_);
117 118 119 120 121 122
  DeserializeValue(&serialData, &serialLength, &ksize_);
  DeserializeValue(&serialData, &serialLength, &strides_);
  DeserializeValue(&serialData, &serialLength, &paddings_);
  DeserializeValue(&serialData, &serialLength, &is_global_);
}

123
size_t PoolPluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
124
  return SerializedSize(ceil_mode_) + SerializedSize(pool_type_.c_str()) +
F
feng_shuai 已提交
125 126 127
         SerializedSize(adaptive_) + SerializedSize(exclusive_) +
         SerializedSize(ksize_) + SerializedSize(strides_) +
         SerializedSize(paddings_) + SerializedSize(is_global_);
128
}
129

130
void PoolPluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
131 132 133
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_.c_str());
  SerializeValue(&buffer, adaptive_);
F
feng_shuai 已提交
134
  SerializeValue(&buffer, exclusive_);
135 136 137 138 139
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, is_global_);
}
140

F
feng_shuai 已提交
141 142 143 144 145
nvinfer1::IPluginV2DynamicExt *PoolPluginDynamic::clone() const TRT_NOEXCEPT {
  return new PoolPluginDynamic(ceil_mode_, pool_type_, adaptive_, exclusive_,
                               ksize_, strides_, paddings_, is_global_);
}

146 147
nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
148
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
149 150 151 152 153 154 155 156 157
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
F
feng_shuai 已提交
158
  if (is_global_ && !adaptive_) {
159 160 161 162
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    return output;
  }
F
feng_shuai 已提交
163 164 165
  if (is_global_ && adaptive_) {
    return inputs[0];
  }
166 167 168 169 170 171 172 173
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
Z
Zhaolong Xing 已提交
174
  auto one_value = expr_builder.constant(1);
175

Z
Zhaolong Xing 已提交
176 177
  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
178

Z
Zhaolong Xing 已提交
179 180 181 182
  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
183 184

  if (!ceil_mode_) {
Z
Zhaolong Xing 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);

202
  } else {
Z
Zhaolong Xing 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
219 220 221 222 223 224 225
  }

  return output;
}

bool PoolPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
226
    int nb_outputs) TRT_NOEXCEPT {
227 228 229 230 231 232 233 234 235 236 237 238
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
239
          in_out[pos].format == nvinfer1::PluginFormat::kLINEAR);
240 241 242
}

nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
243 244
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
245 246 247 248 249 250 251 252 253 254 255 256 257
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                               const nvinfer1::PluginTensorDesc *output_desc,
                               const void *const *inputs, void *const *outputs,
258 259
                               void *workspace,
                               cudaStream_t stream) TRT_NOEXCEPT {
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int h = input_dims.d[2];
  int w = input_dims.d[3];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = h;
    ksize[1] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
  } else {
    auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
  }
F
feng_shuai 已提交
289 290 291 292
  if (adaptive_) {
    output_shape[2] = h;
    output_shape[3] = w;
  }
293 294 295 296 297 298 299

  if (pool_type_ == "max") {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
F
feng_shuai 已提交
300
                   true, false, output, stream, pool_process);
301 302 303 304 305 306
  } else if (pool_type_ == "avg") {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
F
feng_shuai 已提交
307
                   exclusive_, adaptive_, output, stream, pool_process);
308 309 310 311 312 313
  }

  return cudaGetLastError() != cudaSuccess;
}
#endif

N
nhzlx 已提交
314
}  // namespace plugin
N
nhzlx 已提交
315 316 317
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle