batch_sampler.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17
import math

18
from .sampler import Sampler, SequenceSampler, RandomSampler
19
from .dataset import Dataset, IterableDataset
20

21
__all__ = ["BatchSampler", "DistributedBatchSampler"]
22 23


24
class BatchSampler(Sampler):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    """
    A base implement of batch sampler used by `paddle.io.DataLoader`
    which yield mini-batch indices(a list/tuple with length as
    mini-batch size and holds sample indices) iterably.

    Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass
    of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should
    implement following methods:

    :code:`__iter__`: return mini-batch indices iterably.

    :code:`__len__`: get mini-batch number in an epoch.


    Args:
1
1want2sleep 已提交
40 41
        dataset(Dataset, optional): this should be an instance of a subclass of :ref:`api_paddle_io_Dataset` or
                :ref:`api_paddle_io_IterableDataset` or other python object which implemented
42
                :code:`__len__` for BatchSampler to get indices as the
1
1want2sleep 已提交
43 44 45
                range of :attr:`dataset` length. Default None, disabled.
        sampler (Sampler, optional): this should be a :ref:`api_paddle_io_Sample`
                instance which implemented :code:`__iter__` to generate
46 47
                sample indices. :attr:`sampler` and :attr:`dataset`
                can not be set in the same time.  If :attr:`sampler`
1
1want2sleep 已提交
48 49 50 51 52 53
                is set, :attr:`dataset` should not be set. Default None, disabled.
        shuffle(bool, optional): whether to shuffle indices order before generating
                batch indices. Default False, don't shuffle indices before generating batch indices.
        batch_size(int, optional): sample indice number in a mini-batch indices. default 1, each mini-batch includes 1 sample.
        drop_last(bool, optional): whether drop the last incomplete (less than 1 mini-batch) batch dataset. Default False, keep it.
    see :ref:`api_paddle_io_DataLoader`
54 55 56 57 58

    Returns:
        BatchSampler: an iterable object for indices iterating

    Examples:
59

60
        .. code-block:: python
61

62
            from paddle.io import RandomSampler, BatchSampler, Dataset
63 64 65 66 67

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
68

69 70 71 72
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
73

74 75
                def __len__(self):
                    return self.num_samples
76

77 78 79 80 81 82 83 84
            bs = BatchSampler(dataset=RandomDataset(100),
                              shuffle=False,
                              batch_size=16,
                              drop_last=False)

            for batch_indices in bs:
                print(batch_indices)

85 86 87 88 89 90 91 92 93 94
            # init with sampler
            sampler = RandomSampler(RandomDataset(100))
            bs = BatchSampler(sampler=sampler,
                              batch_size=8,
                              drop_last=True)

            for batch_indices in bs:
                print(batch_indices)


95 96 97

    """

98 99 100 101 102 103 104 105
    def __init__(
        self,
        dataset=None,
        sampler=None,
        shuffle=False,
        batch_size=1,
        drop_last=False,
    ):
106
        if dataset is None:
107 108 109 110 111 112 113 114
            assert (
                sampler is not None
            ), "either dataset or sampler should be set"
            assert isinstance(
                sampler, Sampler
            ), "sampler should be a paddle.io.Sampler, but got {}".format(
                type(sampler)
            )
115 116
            assert not shuffle, "shuffle should be False when sampler is set"
            self.sampler = sampler
117
        else:
118 119 120 121 122 123 124 125 126
            assert not isinstance(
                dataset, IterableDataset
            ), "dataset should not be a paddle.io.IterableDataset"
            assert sampler is None, "should not set both dataset and sampler"
            assert isinstance(
                shuffle, bool
            ), "shuffle should be a boolean value, but got {}".format(
                type(shuffle)
            )
127 128 129 130
            if shuffle:
                self.sampler = RandomSampler(dataset)
            else:
                self.sampler = SequenceSampler(dataset)
131

132 133 134 135 136
        assert (
            isinstance(batch_size, int) and batch_size > 0
        ), "batch_size should be a positive integer, but got {}".format(
            batch_size
        )
137
        self.batch_size = batch_size
138 139 140 141 142
        assert isinstance(
            drop_last, bool
        ), "drop_last should be a boolean value, but got {}".format(
            type(drop_last)
        )
143 144 145 146
        self.drop_last = drop_last

    def __iter__(self):
        batch_indices = []
147
        for idx in self.sampler:
148 149 150 151 152 153 154 155
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
156
        num_samples = len(self.sampler)
157 158
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size
159 160


161
class _InfiniteIterableSampler:
162 163 164 165 166 167 168 169 170 171
    def __init__(self, dataset, batch_size=1):
        assert isinstance(
            dataset, IterableDataset
        ), "dataset should be an instance of paddle.io.IterableDataset"
        self.dataset = dataset
        self.batch_size = batch_size

    def __iter__(self):
        while True:
            yield [None] * self.batch_size
172 173 174 175 176


class DistributedBatchSampler(BatchSampler):
    """Sampler that restricts data loading to a subset of the dataset.

177 178
    In such case, each process can pass a DistributedBatchSampler instance
    as a DataLoader sampler, and load a subset of the original dataset that
179 180 181 182
    is exclusive to it.

    .. note::
        Dataset is assumed to be of constant size.
183

184
    Args:
1
1want2sleep 已提交
185
        dataset(Dataset): this could be an instance of subclass of :ref:`api_paddle_io_Dataset`
186
                     or other python object which implemented
1
1want2sleep 已提交
187 188
                     `__len__` for BatchSampler to get indices of samples.
        batch_size(int): sample size of each mini-batch.
189 190
        num_replicas(int, optional): porcess number in distributed training.
            If :attr:`num_replicas` is None, :attr:`num_replicas` will be
1
1want2sleep 已提交
191
            retrieved from :ref:`api_paddle_distributed_ParallelEnv` .
192 193 194
            Default None.
        rank(int, optional): the rank of the current process among :attr:`num_replicas`
            processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
1
1want2sleep 已提交
195 196
            :ref:`api_paddle_distributed_ParallelEnv`. Default None.
        shuffle(bool, optional): whther to shuffle indices order before genrating
197
            batch indices. Default False.
1
1want2sleep 已提交
198 199 200 201 202
        drop_last(bool, optional): whether drop the last incomplete(less than a mini-batch) batch dataset size.
            Default False.

    Returns:
        DistributedBatchSampler, return an iterable object for indices iterating.
203 204 205 206 207 208 209 210 211 212 213 214

    Examples:
        .. code-block:: python

            import numpy as np

            from paddle.io import Dataset, DistributedBatchSampler

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
215

216 217 218 219
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
220

221 222
                def __len__(self):
                    return self.num_samples
223

224 225 226 227 228 229 230 231
            dataset = RandomDataset(100)
            sampler = DistributedBatchSampler(dataset, batch_size=64)

            for data in sampler:
                # do something
                break
    """

232 233 234 235 236 237 238 239 240
    def __init__(
        self,
        dataset,
        batch_size,
        num_replicas=None,
        rank=None,
        shuffle=False,
        drop_last=False,
    ):
241 242
        self.dataset = dataset

243 244 245
        assert (
            isinstance(batch_size, int) and batch_size > 0
        ), "batch_size should be a positive integer"
246
        self.batch_size = batch_size
247
        assert isinstance(shuffle, bool), "shuffle should be a boolean value"
248
        self.shuffle = shuffle
249 250 251
        assert isinstance(
            drop_last, bool
        ), "drop_last should be a boolean number"
252

253
        from paddle.distributed import ParallelEnv
254 255

        if num_replicas is not None:
256 257 258
            assert (
                isinstance(num_replicas, int) and num_replicas > 0
            ), "num_replicas should be a positive integer"
259 260 261 262 263
            self.nranks = num_replicas
        else:
            self.nranks = ParallelEnv().nranks

        if rank is not None:
264 265 266
            assert (
                isinstance(rank, int) and rank >= 0
            ), "rank should be a non-negative integer"
267 268 269 270 271 272 273 274 275 276 277 278
            self.local_rank = rank
        else:
            self.local_rank = ParallelEnv().local_rank

        self.drop_last = drop_last
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
        self.total_size = self.num_samples * self.nranks

    def __iter__(self):
        num_samples = len(self.dataset)
        indices = np.arange(num_samples).tolist()
279
        indices += indices[: (self.total_size - len(indices))]
280 281 282 283 284 285 286 287 288 289 290 291
        assert len(indices) == self.total_size
        if self.shuffle:
            np.random.RandomState(self.epoch).shuffle(indices)
            self.epoch += 1

        # subsample
        def _get_indices_by_batch_size(indices):
            subsampled_indices = []
            last_batch_size = self.total_size % (self.batch_size * self.nranks)
            assert last_batch_size % self.nranks == 0
            last_local_batch_size = last_batch_size // self.nranks

292 293 294 295 296 297
            for i in range(
                self.local_rank * self.batch_size,
                len(indices) - last_batch_size,
                self.batch_size * self.nranks,
            ):
                subsampled_indices.extend(indices[i : i + self.batch_size])
298

299
            indices = indices[len(indices) - last_batch_size :]
300
            subsampled_indices.extend(
301 302 303 304 305 306
                indices[
                    self.local_rank
                    * last_local_batch_size : (self.local_rank + 1)
                    * last_local_batch_size
                ]
            )
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            return subsampled_indices

        if self.nranks > 1:
            indices = _get_indices_by_batch_size(indices)

        assert len(indices) == self.num_samples
        _sample_iter = iter(indices)

        batch_indices = []
        for idx in _sample_iter:
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
        num_samples = self.num_samples
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size

    def set_epoch(self, epoch):
        """
        Sets the epoch number. When :attr:`shuffle=True`, this number is used
        as seeds of random numbers. By default, users may not set this, all
        replicas (workers) use a different random ordering for each epoch.
        If set same number at each epoch, this sampler will yield the same
        ordering at all epoches.

        Arguments:
            epoch (int): Epoch number.

        Examples:
            .. code-block:: python
342

343
                import numpy as np
344

345
                from paddle.io import Dataset, DistributedBatchSampler
346

347 348 349 350
                # init with dataset
                class RandomDataset(Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
351

352 353 354 355
                    def __getitem__(self, idx):
                        image = np.random.random([784]).astype('float32')
                        label = np.random.randint(0, 9, (1, )).astype('int64')
                        return image, label
356

357 358
                    def __len__(self):
                        return self.num_samples
359

360 361
                dataset = RandomDataset(100)
                sampler = DistributedBatchSampler(dataset, batch_size=64)
362

363 364 365 366
                for epoch in range(10):
                    sampler.set_epoch(epoch)
        """
        self.epoch = epoch