batch_sampler.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import numpy as np
from .dataset import Dataset

__all__ = ["BatchSampler"]


class BatchSampler(object):
    """
    A base implement of batch sampler used by `paddle.io.DataLoader`
    which yield mini-batch indices(a list/tuple with length as
    mini-batch size and holds sample indices) iterably.

    Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass
    of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should
    implement following methods:

    :code:`__iter__`: return mini-batch indices iterably.

    :code:`__len__`: get mini-batch number in an epoch.


    Args:
        dataset(Dataset): this could be a :code:`paddle.io.Dataset` 
                implement or other python object which implemented
                :code:`__len__` for BatchSampler to get indices as the
                range of :attr:`dataset` length. Default None.
        indices (list|tuple): a substitution parameter for
                :attr:`dataset` either :attr:`dataset` or
                :attr:`indices` should be set, give the whole
                indices to sampler from directly. Default None.
        shuffle(bool): whether to shuffle indices order before genrating
                batch indices. Default False.
        batch_size(int): sample indice number in a mini-batch indices.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size. Default False

    Returns:
        BatchSampler: an iterable object for indices iterating

    Examples:
        
        .. code-block:: python
            
            from paddle.io import BatchSampler, Dataset

            # init with indices
            bs = BatchSampler(indices=list(range(100)),
                              shuffle=True,
                              batch_size=8,
                              drop_last=True)

            for batch_indices in bs:
                print(batch_indices)

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples
            
            bs = BatchSampler(dataset=RandomDataset(100),
                              shuffle=False,
                              batch_size=16,
                              drop_last=False)

            for batch_indices in bs:
                print(batch_indices)

    see `paddle.io.DataLoader`

    """

    def __init__(self,
                 dataset=None,
                 indices=None,
                 shuffle=False,
                 batch_size=1,
                 drop_last=False):
        if dataset is None:
            assert indices is not None, \
                "either dataset or indices should be set"
            assert isinstance(indices, list) or isinstance(indices, tuple), \
                "indices should be a list or tuple, but got {}".format(type(indices))
            self.indices = indices
        else:
            assert isinstance(dataset, Dataset), \
                "dataset should be an instance of paddle.io.Dataset"
            assert indices is None, \
                "should not set both dataset and indices"
            self.indices = list(range(len(dataset)))

        assert isinstance(batch_size, int) and batch_size > 0, \
            "batch_size should be a positive integer, but got {}".format(batch_size)
        self.batch_size = batch_size
        assert isinstance(shuffle, bool), \
            "shuffle should be a boolean value, but got {}".format(type(shuffle))
        self.shuffle = shuffle
        assert isinstance(drop_last, bool), \
            "drop_last should be a boolean value, but got {}".format(type(drop_last))
        self.drop_last = drop_last

    def __iter__(self):
        if self.shuffle:
            np.random.shuffle(self.indices)
        _iter = iter(self.indices)

        batch_indices = []
        for idx in _iter:
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
        num_samples = len(self.indices)
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size