batch_sampler.py 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17
import math

18
from .sampler import Sampler, SequenceSampler, RandomSampler
19
from .dataset import Dataset, IterableDataset
20

21
__all__ = ["BatchSampler", "DistributedBatchSampler"]
22 23


24
class BatchSampler(Sampler):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    """
    A base implement of batch sampler used by `paddle.io.DataLoader`
    which yield mini-batch indices(a list/tuple with length as
    mini-batch size and holds sample indices) iterably.

    Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass
    of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should
    implement following methods:

    :code:`__iter__`: return mini-batch indices iterably.

    :code:`__len__`: get mini-batch number in an epoch.


    Args:
40
        dataset(Dataset): this could be a :code:`paddle.io.Dataset`
41 42 43
                implement or other python object which implemented
                :code:`__len__` for BatchSampler to get indices as the
                range of :attr:`dataset` length. Default None.
44 45 46 47 48
        sampler (Sampler): this could be a :code:`paddle.io.Dataset`
                instance which implemented :code:`__iter__` to yield
                sample indices. :attr:`sampler` and :attr:`dataset`
                can not be set in the same time.  If :attr:`sampler`
                is set, :attr:`shuffle` should not be set. Default None.
49 50 51 52 53 54 55 56 57 58
        shuffle(bool): whether to shuffle indices order before genrating
                batch indices. Default False.
        batch_size(int): sample indice number in a mini-batch indices.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size. Default False

    Returns:
        BatchSampler: an iterable object for indices iterating

    Examples:
59

60
        .. code-block:: python
61

62
            from paddle.io import RandomSampler, BatchSampler, Dataset
63 64 65 66 67

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
68

69 70 71 72
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
73

74 75
                def __len__(self):
                    return self.num_samples
76

77 78 79 80 81 82 83 84
            bs = BatchSampler(dataset=RandomDataset(100),
                              shuffle=False,
                              batch_size=16,
                              drop_last=False)

            for batch_indices in bs:
                print(batch_indices)

85 86 87 88 89 90 91 92 93 94
            # init with sampler
            sampler = RandomSampler(RandomDataset(100))
            bs = BatchSampler(sampler=sampler,
                              batch_size=8,
                              drop_last=True)

            for batch_indices in bs:
                print(batch_indices)


95 96 97 98 99 100
    see `paddle.io.DataLoader`

    """

    def __init__(self,
                 dataset=None,
101
                 sampler=None,
102 103 104 105
                 shuffle=False,
                 batch_size=1,
                 drop_last=False):
        if dataset is None:
106 107 108 109 110 111
            assert sampler is not None, \
                "either dataset or sampler should be set"
            assert isinstance(sampler, Sampler), \
                "sampler should be a paddle.io.Sampler, but got {}".format(type(sampler))
            assert not shuffle, "shuffle should be False when sampler is set"
            self.sampler = sampler
112
        else:
113 114 115 116
            assert not isinstance(dataset, IterableDataset), \
                "dataset should not be a paddle.io.IterableDataset"
            assert sampler is None, \
                "should not set both dataset and sampler"
117 118 119 120 121 122
            assert isinstance(shuffle, bool), \
                "shuffle should be a boolean value, but got {}".format(type(shuffle))
            if shuffle:
                self.sampler = RandomSampler(dataset)
            else:
                self.sampler = SequenceSampler(dataset)
123 124 125 126 127 128 129 130 131 132

        assert isinstance(batch_size, int) and batch_size > 0, \
            "batch_size should be a positive integer, but got {}".format(batch_size)
        self.batch_size = batch_size
        assert isinstance(drop_last, bool), \
            "drop_last should be a boolean value, but got {}".format(type(drop_last))
        self.drop_last = drop_last

    def __iter__(self):
        batch_indices = []
133
        for idx in self.sampler:
134 135 136 137 138 139 140 141
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
142
        num_samples = len(self.sampler)
143 144
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size
145 146 147


class _InfiniteIterableSampler(object):
148

149 150 151 152 153 154 155 156 157 158
    def __init__(self, dataset, batch_size=1):
        assert isinstance(
            dataset, IterableDataset
        ), "dataset should be an instance of paddle.io.IterableDataset"
        self.dataset = dataset
        self.batch_size = batch_size

    def __iter__(self):
        while True:
            yield [None] * self.batch_size
159 160 161 162 163


class DistributedBatchSampler(BatchSampler):
    """Sampler that restricts data loading to a subset of the dataset.

164 165
    In such case, each process can pass a DistributedBatchSampler instance
    as a DataLoader sampler, and load a subset of the original dataset that
166 167 168 169
    is exclusive to it.

    .. note::
        Dataset is assumed to be of constant size.
170

171 172 173 174 175 176 177 178
    Args:
        dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
                     or other python object which implemented
                     `__len__` for BatchSampler to get sample
                     number of data source.
        batch_size(int): sample indice number in a mini-batch indices.
        num_replicas(int, optional): porcess number in distributed training.
            If :attr:`num_replicas` is None, :attr:`num_replicas` will be
179
            retrieved from :code:`paddle.distributed.ParallenEnv`.
180 181 182
            Default None.
        rank(int, optional): the rank of the current process among :attr:`num_replicas`
            processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
183
            :code:`paddle.distributed.ParallenEnv`. Default None.
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        shuffle(bool): whther to shuffle indices order before genrating
            batch indices. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size. Default False

    Examples:
        .. code-block:: python

            import numpy as np

            from paddle.io import Dataset, DistributedBatchSampler

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
200

201 202 203 204
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
205

206 207
                def __len__(self):
                    return self.num_samples
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
            dataset = RandomDataset(100)
            sampler = DistributedBatchSampler(dataset, batch_size=64)

            for data in sampler:
                # do something
                break
    """

    def __init__(self,
                 dataset,
                 batch_size,
                 num_replicas=None,
                 rank=None,
                 shuffle=False,
                 drop_last=False):
        self.dataset = dataset

        assert isinstance(batch_size, int) and batch_size > 0, \
                "batch_size should be a positive integer"
        self.batch_size = batch_size
        assert isinstance(shuffle, bool), \
                "shuffle should be a boolean value"
        self.shuffle = shuffle
        assert isinstance(drop_last, bool), \
                "drop_last should be a boolean number"

        from paddle.fluid.dygraph.parallel import ParallelEnv

        if num_replicas is not None:
            assert isinstance(num_replicas, int) and num_replicas > 0, \
                    "num_replicas should be a positive integer"
            self.nranks = num_replicas
        else:
            self.nranks = ParallelEnv().nranks

        if rank is not None:
            assert isinstance(rank, int) and rank >= 0, \
                    "rank should be a non-negative integer"
            self.local_rank = rank
        else:
            self.local_rank = ParallelEnv().local_rank

        self.drop_last = drop_last
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
        self.total_size = self.num_samples * self.nranks

    def __iter__(self):
        num_samples = len(self.dataset)
        indices = np.arange(num_samples).tolist()
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size
        if self.shuffle:
            np.random.RandomState(self.epoch).shuffle(indices)
            self.epoch += 1

        # subsample
        def _get_indices_by_batch_size(indices):
            subsampled_indices = []
            last_batch_size = self.total_size % (self.batch_size * self.nranks)
            assert last_batch_size % self.nranks == 0
            last_local_batch_size = last_batch_size // self.nranks

            for i in range(self.local_rank * self.batch_size,
                           len(indices) - last_batch_size,
                           self.batch_size * self.nranks):
                subsampled_indices.extend(indices[i:i + self.batch_size])

            indices = indices[len(indices) - last_batch_size:]
278 279 280 281
            subsampled_indices.extend(
                indices[self.local_rank *
                        last_local_batch_size:(self.local_rank + 1) *
                        last_local_batch_size])
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            return subsampled_indices

        if self.nranks > 1:
            indices = _get_indices_by_batch_size(indices)

        assert len(indices) == self.num_samples
        _sample_iter = iter(indices)

        batch_indices = []
        for idx in _sample_iter:
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
        num_samples = self.num_samples
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size

    def set_epoch(self, epoch):
        """
        Sets the epoch number. When :attr:`shuffle=True`, this number is used
        as seeds of random numbers. By default, users may not set this, all
        replicas (workers) use a different random ordering for each epoch.
        If set same number at each epoch, this sampler will yield the same
        ordering at all epoches.

        Arguments:
            epoch (int): Epoch number.

        Examples:
            .. code-block:: python
317

318
                import numpy as np
319

320
                from paddle.io import Dataset, DistributedBatchSampler
321

322 323 324 325
                # init with dataset
                class RandomDataset(Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
326

327 328 329 330
                    def __getitem__(self, idx):
                        image = np.random.random([784]).astype('float32')
                        label = np.random.randint(0, 9, (1, )).astype('int64')
                        return image, label
331

332 333
                    def __len__(self):
                        return self.num_samples
334

335 336
                dataset = RandomDataset(100)
                sampler = DistributedBatchSampler(dataset, batch_size=64)
337

338 339 340 341
                for epoch in range(10):
                    sampler.set_epoch(epoch)
        """
        self.epoch = epoch