engine.py 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
import paddle.utils as utils
27
from paddle import static
28
from paddle.distributed import fleet
29
from paddle.fluid.executor import _to_name_str
30
from paddle.fluid.layers.utils import flatten
31 32 33
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
34
from paddle.metric import Metric
35
from paddle.static import InputSpec, Operator, Variable, global_scope
36

37
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
38
from .callbacks import config_callbacks
39
from .cluster import Cluster, get_default_cluster
40 41 42
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
43 44
from .dist_loader import (
    DistributedDataLoader,
45
    DistributedDataLoaderFromGenerator,
46
)
47 48 49
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
50
from .interface import CollectionNames, get_collection
51 52 53 54
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
55

56 57

class Engine:
58
    """
59 60
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
61 62 63 64 65 66 67
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
68 69
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
86
            from paddle.distributed.fleet import auto
87 88 89 90 91 92 93 94 95 96
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
97
            loss = paddle.nn.CrossEntropyLoss()
98 99 100 101
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

102 103
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
104 105 106
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
107
            # evaluate
108 109 110 111 112 113 114
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
115
            # load
116 117 118
            engine.load("./my_model")

    """
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
135 136 137 138
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
139 140 141 142 143 144 145 146 147

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
148 149 150
        self._loss = loss

        if optimizer and not isinstance(
151
            optimizer,
152
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
153
        ):
154 155
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
156
                " or `paddle.static.Optimizer`."
157
            )
158
        self._optimizer = auto_utils.validate_opt(optimizer)
159
        self._orig_optimizer = copy.deepcopy(self._optimizer)
160 161

        metrics = metrics or []
162
        for metric in auto_utils.to_list(metrics):
163 164 165 166 167 168
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
169
        self._metrics = auto_utils.to_list(metrics)
170 171 172 173 174 175 176 177 178 179 180 181 182

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

183
        self._logger = get_logger(logging.INFO)
184
        if os.getenv("POD_NAME"):
185 186
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
187
            )
188
            fleet.init(is_collective=True)
189

190
        self._executor = None
191 192 193
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
194

195 196
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
197
        self._orig_dist_context = get_default_distributed_context()
198
        self._dist_contexts = {}
199 200
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
201 202
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
203 204 205 206
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
207
        self._planners = {}
208 209
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
210 211
            "train": False,
            "eval": False,
212
            "predict": False,
213
        }
214 215 216 217
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
218
        self._losses = []
219

220
        self._mode = None
221 222
        self._skip_build = False
        self._outside_dataloader = False
223
        self._planned_mode = None
224 225
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
226

Z
zhaoyingli 已提交
227 228
        self.history = None

229 230
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
249
            raise TypeError(
250 251 252 253
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
254 255
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
256 257

        num_shards = self._strategy.dataset.num_shards
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
273
                _adjust_item_spec(num_shards, spec)
274 275 276 277
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
278
            elif isinstance(item, numbers.Number):
279
                specs.append(InputSpec([batch_size], type(item), name))
280 281 282 283 284 285
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

302
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
303
        if in_dygraph_mode() or self._dygraph_mode:
304 305
            raise ValueError("Only support static graph mode.")

306
        if inputs_spec:
307 308 309 310 311
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
312 313 314 315 316 317 318 319 320
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
321
        if labels_spec:
322 323 324 325 326
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
327 328 329 330 331 332 333 334 335 336
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

337 338 339 340 341 342 343 344 345
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
346 347 348
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
366 367 368
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
398
        if user_feeds is not None:
399 400 401 402 403
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
404 405
            for name, data in user_feeds.items():
                feeds[name] = data
406 407
        return feeds

408
    def _prepare_fetch(self, user_fetches, mode):
409
        if user_fetches is not None:
410 411 412 413 414
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
415
        fetch_names = []
416
        fetch_indices = []
417

418 419
        def _process_fetch_group(group_name, var_list):
            group_indices = []
420
            for var in var_list:
421 422 423 424 425 426
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
427 428
            if not group_indices:
                fetch_names.append([])
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

446 447 448 449 450 451 452 453 454 455
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
456
        logs = {}
457
        if epoch is not None:
Z
zhaoyingli 已提交
458
            logs["epoch"] = epoch
459
        if step is not None:
Z
zhaoyingli 已提交
460
            logs["step"] = step + 1
461
        if lr is not None:
Z
zhaoyingli 已提交
462
            logs["lr"] = lr
463 464
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
465
            # logging loss
466
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
467
            assert len(loss_indices) <= 1
468
            for idx in loss_indices:
Z
zhaoyingli 已提交
469
                logs["loss"] = outs[idx][0]
470
            group_idx += 1
Z
zhaoyingli 已提交
471
            # logging metrics
472 473 474 475 476 477 478 479 480 481
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
482
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
483
                            logs[metric.name()[i]] = res
484
                    group_idx += 1
Z
zhaoyingli 已提交
485 486 487 488 489 490 491
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
492 493
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
494 495
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
496 497 498 499
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
500 501
        logs["fetches"] = logs_fetch
        return logs
502

503 504 505 506 507 508 509 510 511 512 513
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

514
    def _build(self, mode):
515
        if in_dygraph_mode() or self._dygraph_mode:
516
            paddle.disable_static()
517 518 519
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

520
            self.program_helper = ProgramHelper(
521 522 523 524 525
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
526
            )
527
            # build forward main program
528 529
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
530

531 532 533
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
534

535 536
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
537
            outputs = self.program_helper.output_vars
538
            self._losses = self.program_helper.loss_vars
539
            metrics = self.program_helper.metric_vars
540

541
            paddle.enable_static()
542
        else:
543
            # build program in static graph mode
544 545 546 547
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

548
            outputs = []
549
            metrics = []
550
            self._losses = []
551 552
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
553
            if not self._skip_build:
554 555 556
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
557 558 559 560 561 562 563
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

564
                    outputs = auto_utils.to_list(self._model(*self._inputs))
565

566
                    if mode != "predict" and self._loss:
567 568 569 570 571
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
572
                        self._losses = auto_utils.to_list(
573 574
                            self._loss(*(outputs + self._labels))
                        )
575

576
                    if mode != "predict" and (outputs or self._labels):
577 578
                        for metric in self._metrics:
                            metrics.append(
579
                                auto_utils.to_list(
580 581
                                    metric.compute(*(outputs + self._labels))
                                )
582
                            )
Z
zhaoyingli 已提交
583
            elif mode == "train":
584 585 586
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
587
                self._losses = auto_utils.to_list(self._loss)
588 589 590 591 592 593 594

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
595 596 597 598 599 600
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
601

602
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
603 604 605

        fetch_vars = {
            "outputs": flatten(outputs),
606
            "loss": self._losses,
607
            "metrics": metrics,
608 609
        }

610 611 612
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

613 614 615
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
616
        self._dist_contexts[mode] = DistributedContext(
617 618 619
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
620 621 622 623 624 625 626 627 628 629 630
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
631 632 633 634 635
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
636
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
637
        self._fwd_main_progs[mode] = serial_main_prog.clone()
638

639 640 641
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
642

643 644 645 646 647 648 649 650
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
651 652

        from .tuner.optimization_tuner import OptimizationTuner
653 654 655 656 657 658 659 660 661

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
662 663 664

        self._optimization_tuner.tune()

665
        if self._tuning.run_after_tuning:
666 667
            # update the strategy
            self._dist_contexts[
668 669
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
670

671 672 673 674 675 676
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

677 678
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
679

680 681 682 683
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
684
        # TODO: check this feed_list
685 686 687 688 689
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

690 691
        self._dp_world_sizes = []
        self._dp_ranks = []
692
        for feed_var in feed_list:
693
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
694
                self._cur_rank, feed_var, self._dist_contexts[mode]
695
            )
696 697
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
698

699
    def _parallel(self, mode, all_ranks=False):
700 701 702
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
703
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
704 705 706
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
707
        )
708 709 710 711
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
712 713

    def _init_dist_context(self, mode):
714
        # Init dist_context['mode'] with the first planned dist_context
715 716 717 718 719 720 721 722 723 724
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
725 726 727 728 729 730 731 732
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
733 734 735
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
736
        # Get the current content from the distributed context
737
        self._serial_main_progs[mode] = self._dist_contexts[
738 739
            mode
        ].serial_main_program
740
        self._serial_startup_progs[mode] = self._dist_contexts[
741 742
            mode
        ].serial_startup_program
743
        self._dist_main_progs[mode] = self._dist_contexts[
744 745
            mode
        ].dist_main_programs
746
        self._dist_startup_progs[mode] = self._dist_contexts[
747 748
            mode
        ].dist_startup_programs
749 750
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
751
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
752

753 754 755 756
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
757
            cur_rank = self._cur_rank
758 759 760
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
761
            if self._strategy.auto_mode == "full":
762 763 764
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
765 766
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
767
                    if cur_rank not in process_group.ranks:
768 769
                        continue
                    process_group.instantiate()
770

771
        self._place = _get_device()
772
        if isinstance(self._place, paddle.framework.CUDAPlace):
773 774 775
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
776

777 778 779 780 781
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

782
        if self._dygraph_mode:
783 784
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
785 786 787
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
788

789
        if self._executor is None:
790
            self._executor = paddle.static.Executor(self._place)
791 792 793 794 795 796 797 798 799 800
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
801

802
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
803 804 805
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
806 807

        if self._strategy.reinit:
Z
zhaoyingli 已提交
808
            self._logger.info("NOTE: parameters will be re-initialized.")
809 810 811
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
830 831 832 833 834 835 836 837
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
838
                more than two items, train_sample_split specifies how to split these items into
839
                input and label. The items before it are input and the left are label. Default: None.
840
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
841 842 843
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
844
                is executed in one epoch before stating the next one. If None, it is equal to
845 846
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
847
                evaluation at the end of epoch. No evaluation will be done if set to None.
848
                Default: None. (Unsupported for now)
849
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
850 851
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
852 853
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
854 855 856
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
857 858
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
859 860 861 862
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
863
                0. Default None.
864 865 866 867 868 869 870 871 872 873 874 875
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
876
                from paddle.distributed.fleet import auto
877 878 879 880 881 882 883 884 885
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
886
                loss = paddle.nn.CrossEntropyLoss()
887 888 889 890
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

891
                engine = auto.Engine(model, loss, optimizer, metrics)
892 893 894 895
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
896 897
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
898 899
            train_data, train_sample_split, batch_size
        )
900 901
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
902
        else:
903
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
904

905 906 907 908 909 910 911
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
912 913
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
914

915
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
942 943
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
944 945
                except core.EOFException:
                    break
946
                lr = auto_utils.get_lr(self._optimizer)
947 948 949 950 951 952 953 954 955
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
956 957 958
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
959 960 961 962 963 964 965 966 967 968
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
969
                val_logs = {
970
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
971 972 973 974 975 976 977 978 979 980
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
981

982 983 984 985 986 987 988 989 990 991 992
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
993 994 995 996
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
997 998
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
999
                to be a (input, label) pair by default and has two items. If each sample has
1000
                more than two items, valid_sample_split specifies how to split these items into
1001
                input and label. The items before it are input and the left are label. Default: None.
1002
            batch_size (int, optional): The batch size of valid_data. The user's data will
1003
                be used directly without batching if set to None. Default: 1.
1004 1005
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1006 1007 1008 1009 1010
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1011
                during evaluating. Default: None. (Unused for now)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1022
                from paddle.distributed.fleet import auto
1023 1024 1025 1026 1027 1028 1029 1030 1031
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1032
                loss = paddle.nn.CrossEntropyLoss()
1033 1034
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1035
                engine = auto.Engine(model, loss, metrics=metrics)
1036 1037 1038
                engine.evaluate(valid_dataset, batch_size=64)

        """
1039 1040
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1041 1042
            valid_data, valid_sample_split, batch_size
        )
1043 1044
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1045
        else:
1046
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1047

1048 1049 1050 1051 1052 1053
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1054 1055
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1056

1057
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1058

Z
zhaoyingli 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1069 1070 1071
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1072
        logs = {}
1073
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1074
            cbks.on_batch_begin('eval', step, logs)
1075
            try:
1076 1077
                outs = self._executor.run(
                    self.main_program,
1078
                    fetch_list=fetch_names,
1079
                    use_program_cache=self._strategy.use_cache,
1080 1081
                    return_numpy=self._strategy.return_numpy,
                )
1082
            except core.EOFException:
1083
                break
1084 1085 1086
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1087 1088
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1089
        self._reset_metrics()
Z
zhaoyingli 已提交
1090
        return logs
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1102 1103 1104 1105 1106 1107 1108
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1109
                more than two items, test_sample_split specifies how to split these items into
1110 1111 1112
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1113 1114
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1131
                from paddle.distributed.fleet import auto
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1142
                engine = auto.Engine(model)
1143 1144
                engine.predict(valid_dataset, batch_size=64)
        """
1145 1146
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1147 1148
            test_data, test_sample_split, batch_size
        )
1149 1150
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1151
        else:
1152
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1153

1154 1155 1156 1157 1158 1159
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1160 1161
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1162

1163
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1164

Z
zhaoyingli 已提交
1165 1166 1167 1168 1169
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1170
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1171
            cbks.on_batch_begin('predict', step, logs)
1172
            try:
1173 1174
                outs = self._executor.run(
                    self.main_program,
1175
                    fetch_list=fetch_names,
1176
                    use_program_cache=self._strategy.use_cache,
1177 1178
                    return_numpy=self._strategy.return_numpy,
                )
1179
            except core.EOFException:
1180
                break
1181 1182 1183
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1184 1185 1186 1187 1188
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1206 1207 1208
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1209 1210
            dataset, sample_split, batch_size
        )
1211 1212
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1213
        else:
1214
            self._switch_mode(self._mode)
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1229 1230
            steps_per_epoch=steps_per_epoch,
        )
1231 1232
        return dataloader

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1248 1249 1250
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1251 1252
            dataset, sample_split, batch_size
        )
1253 1254 1255 1256
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1269 1270
            collate_fn=collate_fn,
        )
1271 1272
        return dataloader

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1283 1284
        if mode is not None:
            self.to_mode(mode)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1301 1302
        if inputs or labels:
            self._skip_build = True
1303 1304
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1305
            )
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1317 1318 1319
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1320

1321 1322 1323 1324 1325 1326 1327
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1328
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1329 1330 1331 1332
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1333 1334 1335 1336
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1337
            self._prepare_reader()
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1348
        return logs
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1366

1367
        if self._strategy.gradient_merge and batch_size is not None:
1368 1369 1370 1371 1372
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1373
            batch_size //= self._k_steps
1374

1375 1376
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1377
        dist_main_block = dist_main_prog.global_block()
1378

1379 1380 1381 1382
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1383 1384
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1385 1386 1387 1388
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1389 1390 1391 1392
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1393 1394

        # insert read op at the end of program
1395
        places = paddle.static.cuda_places()
1396
        with static.program_guard(dist_main_prog, dist_startup_prog):
1397
            dataloader = DistributedDataLoader(
1398
                dataset,
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1414
                data_parallel_world_size=self._dp_world_sizes,
1415 1416
                data_parallel_rank=self._dp_ranks,
            )
1417

1418 1419
        return dataloader

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1434 1435

        if self._strategy.gradient_merge and batch_size is not None:
1436 1437 1438 1439 1440
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1480 1481
                data_parallel_rank=self._dp_ranks,
            )
1482 1483 1484 1485 1486 1487
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1488 1489
            tune_data, tune_sample_split, batch_size
        )
1490 1491
        self._optimization_tuning(self._mode, tune_data, batch_size)

1492
    def _validate_spec(self, specs):
1493
        specs = auto_utils.to_list(specs)
1494
        self._k_steps = self._strategy.gradient_merge.k_steps
1495 1496
        if specs is not None:
            for i, spec in enumerate(specs):
1497 1498 1499 1500
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1501 1502
                if spec.name is None:
                    raise ValueError(
1503 1504 1505 1506
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1507
                if self._k_steps > 1:
1508
                    shape = list(spec.shape)
1509 1510 1511 1512 1513
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1514
                    shape[0] //= self._k_steps
1515
                    spec.shape = shape
1516 1517 1518
        return specs or []

    def _validate_vars(self, vars):
1519
        vars = auto_utils.to_list(vars)
1520 1521 1522 1523 1524
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1525

1526 1527 1528 1529
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1530 1531 1532 1533
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1534 1535 1536
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1537
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1538 1539
        return metrics_name

1540
    def _switch_mode(self, mode):
1541 1542 1543
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1544
        self.to_mode(mode)
Z
zhaoyingli 已提交
1545
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1546

1547
    def to_mode(self, mode):
1548 1549 1550 1551 1552
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1553 1554
        self._mode = mode

1555 1556 1557
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1558
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1559 1560 1561 1562 1563
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1564 1565
        """
        Saves the model, parameters, optimizer state to path.
1566 1567 1568 1569 1570 1571 1572
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1573
                for inference only. If `training` is set to True, the optimizer state
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1586
                from paddle.distributed.fleet import auto
1587 1588 1589 1590 1591 1592 1593 1594 1595
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1596
                loss = paddle.nn.CrossEntropyLoss()
1597 1598 1599 1600
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1601
                engine = auto.Engine(model, loss, optimizer, metrics)
1602 1603 1604 1605
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1606

1607
        """
1608
        if training:
Z
zhaoyingli 已提交
1609 1610 1611 1612
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1613 1614 1615 1616 1617 1618
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1619
        else:
Z
zhaoyingli 已提交
1620 1621 1622 1623
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1624
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1625
                from paddle.static.quantization import QuantWeightPass
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

                self._logger.info("export quantized model.")
                self._logger.info(
                    "convert config {}".format(self._strategy.qat.to_dict())
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1638 1639 1640 1641 1642 1643 1644
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1645

1646 1647 1648 1649 1650 1651
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1652
                optimizer states.
1653 1654 1655
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1656
                mismatch shape). Default: True.
1657
            load_optimizer (bool, optional): If True, the stored optimizer
1658
                states is restored. Otherwise, the optimizer states is initialized
1659
                from scratch. Default: True.
1660 1661 1662 1663 1664 1665 1666 1667 1668

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1669
                from paddle.distributed.fleet import auto
1670 1671 1672 1673 1674 1675 1676 1677 1678
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1679
                loss = paddle.nn.CrossEntropyLoss()
1680 1681 1682 1683
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1684
                engine = auto.Engine(model, loss, optimizer, metrics)
1685 1686 1687 1688 1689
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1690

1691 1692 1693
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1694 1695
            path, load_optimizer
        )
1696
        return self._state_dict, self._dist_attr
1697

1698
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1709
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1710 1711 1712 1713 1714 1715 1716

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1717
            self._logger.info(
1718 1719 1720 1721 1722
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1723 1724 1725
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1726 1727
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1728
                    mode, list(self._has_prepared.keys())
1729 1730
                )
            )
1731 1732
        self.to_mode(mode)

1733 1734 1735
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1736 1737 1738
            self._build(mode)
            self._plan(mode)
        else:
1739
            if in_dygraph_mode() or self._dygraph_mode:
1740
                raise ValueError(
1741 1742 1743 1744 1745
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1746
                )
1747 1748 1749 1750 1751 1752 1753 1754
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1755 1756 1757 1758 1759 1760

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1761 1762
    @property
    def main_program(self):
1763
        return self._dist_main_progs[self._mode][self._cur_rank]
1764 1765 1766

    @property
    def startup_program(self):
1767
        return self._dist_startup_progs[self._mode][self._cur_rank]
1768 1769 1770

    @property
    def dist_context(self):
1771
        return self._dist_contexts[self._mode]
1772 1773 1774

    @property
    def serial_main_program(self):
1775
        return self._serial_main_progs[self._mode]
1776 1777 1778

    @property
    def serial_startup_program(self):
1779
        return self._serial_startup_progs[self._mode]
1780 1781 1782

    @property
    def fetch_vars(self):
1783
        return self._fetch_vars[self._mode]
1784 1785 1786

    @property
    def inputs(self):
1787
        return self._inputs
1788 1789 1790

    @property
    def labels(self):
1791
        return self._labels