test_variable.py 36.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import unittest
W
WeiXin 已提交
18 19
from functools import reduce

20
import paddle
21
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, in_dygraph_mode
22
import paddle
W
wopeizl 已提交
23
import paddle.fluid as fluid
H
Hongyu Liu 已提交
24
import paddle.fluid.layers as layers
25
import paddle.fluid.core as core
Y
Yu Yang 已提交
26 27
import numpy as np

28 29
paddle.enable_static()

Y
Yu Yang 已提交
30 31 32

class TestVariable(unittest.TestCase):
    def test_np_dtype_convert(self):
33
        DT = core.VarDesc.VarType
34
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
35 36 37 38 39 40 41
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
42 43
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45
    def test_var(self):
Y
Yu Yang 已提交
46
        b = default_main_program().current_block()
Y
Yu Yang 已提交
47 48
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w")
49
        self.assertNotEqual(str(w), "")
50
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
51 52
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
53
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
54 55 56
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
57
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
58 59
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
60
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
61 62 63 64 65
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

66 67 68 69 70 71
        w = b.create_var(
            dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
            shape=[1],
            name="str_var")
        self.assertEqual(None, w.lod_level)

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
101 102 103 104 105 106 107
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
108
    def _test_slice(self, place):
W
wopeizl 已提交
109 110 111 112 113
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
114
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
115 116 117 118

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
119
        nw = w[:, :]
W
wopeizl 已提交
120 121
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
122 123
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
124

H
Hongyu Liu 已提交
125 126 127 128 129 130 131
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
            tensor_array = np.array(
                [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                 [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
146 147
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
148
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
149 150 151 152 153 154 155 156 157 158
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
159 160 161

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
162
            y_1 = y[:, 0]
W
wopeizl 已提交
163 164 165 166 167
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
168
            local_out = exe.run(main,
W
wopeizl 已提交
169
                                feed=feeder.feed([data]),
W
wopeizl 已提交
170 171
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
172 173
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
174 175
                                ])

H
Hongyu Liu 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            self.assertTrue(
                np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
            self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
            self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
            self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
            self.assertTrue(
                np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
            self.assertTrue(
                np.array_equal(local_out[6],
                               tensor_array.reshape((3, -1, 3))[:, :, -1]))
            self.assertTrue(
                np.array_equal(local_out[7], tensor_array[:, :, :-1]))
            self.assertTrue(
                np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
            self.assertTrue(
                np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
            self.assertTrue(
                np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
            self.assertTrue(
                np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
            self.assertTrue(
                np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
            self.assertTrue(
                np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
W
wopeizl 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

259 260 261 262 263
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
264
            y = paddle.assign([1, 2, 3, 4])
265 266 267 268
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
269 270
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
271
            out7 = y[..., 0]
272 273

        exe = paddle.static.Executor(place)
274 275
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
276

W
WeiXin 已提交
277 278
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
279
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])], np.array([1])
W
WeiXin 已提交
280
        ]
281 282 283 284 285

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
286 287
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
288
        self.assertTrue((result[6] == expected[6]).all())
289

290 291
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
292

293
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
294 295
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
296 297 298 299 300
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
301 302 303 304
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
305 306 307 308 309

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
310 311 312 313
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
314 315

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
316 317
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
318

Z
zyfncg 已提交
319 320 321 322
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
323 324 325 326 327

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
328 329 330 331
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
332

Z
zyfncg 已提交
333 334 335
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
336 337
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
338

339 340
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
341
        if core.is_compiled_with_cuda():
342 343 344 345 346 347
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
348
            self._test_slice_index_ellipsis(place)
349
            self._test_slice_index_list_bool(place)
W
wopeizl 已提交
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

367
    def test_fake_interface_only_api(self):
368 369 370
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
387
            var.stop_gradient = True
388 389 390 391 392 393
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32')
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]).astype('float32')
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
464

465 466 467 468 469 470 471 472 473 474
class TestVariableSlice(unittest.TestCase):
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
475
            out4 = x[..., None, :, None]
476

477
        outs = [out0, out1, out2, out3, out4]
478 479 480 481
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
482 483
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
class TestListIndex(unittest.TestCase):
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32')

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
                self.assertTrue(np.array_equal(getitem_np, getitem_pp[0]))

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
            self.assertTrue(np.array_equal(getitem_np, getitem_pp.numpy()))

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32')
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32')
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32')

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

            self.assertTrue(
                np.array_equal(y2, getitem_pp[0]),
                msg='\n numpy:{},\n paddle:{}'.format(y2, getitem_pp[0]))

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
        self.assertTrue(np.array_equal(y.numpy(), y_np))

    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32')

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array,
                          value.name: value_np},
                    fetch_list=fetch_list)
            return
        setitem_pp = exe.run(prog,
                             feed={x.name: array,
                                   value.name: value_np},
                             fetch_list=fetch_list)

        self.assertTrue(
            np.array_equal(array2, setitem_pp[0]),
            msg='\n numpy:{},\n paddle:{}'.format(array2, setitem_pp[0]))

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [2, 3, 4]
        index1 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape)
        index2 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape) + 2

        value_shape = [4]
        value_np = np.arange(
            self.numel(value_shape), dtype='float32').reshape(value_shape) + 100
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32')
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32')

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32')
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32')
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32')

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
                self.assertTrue(
                    np.array_equal(array2, setitem_pp[0]),
                    msg='\n numpy:{},\n paddle:{}'.format(array2,
                                                          setitem_pp[0]))
                self.assertTrue(
                    np.array_equal(array3, setitem_pp[1]),
                    msg='\n numpy:{},\n paddle:{}'.format(array3,
                                                          setitem_pp[1]))
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)

        index_shape = [2, 3, 4]
        index1 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape)
        index2 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape) + 2

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32')
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32')

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
                                     feed={x1.name: array,
                                           x2.name: array},
                                     fetch_list=fetch_list)
                self.assertTrue(
                    np.array_equal(array2, setitem_pp[0]),
                    msg='\n numpy:{},\n paddle:{}'.format(array2,
                                                          setitem_pp[0]))
                self.assertTrue(
                    np.array_equal(array3, setitem_pp[1]),
                    msg='\n numpy:{},\n paddle:{}'.format(array3,
                                                          setitem_pp[1]))

                self.assertTrue(
                    np.array_equal(y_np1, setitem_pp[2]),
                    msg='\n numpy:{},\n paddle:{}'.format(y_np1, setitem_pp[2]))
                self.assertTrue(
                    np.array_equal(y_np2, setitem_pp[3]),
                    msg='\n numpy:{},\n paddle:{}'.format(y_np2, setitem_pp[3]))
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
        array = np.arange(
            self.numel(inps_shape), dtype='float32').reshape(inps_shape)
        index_shape = [2, 3, 4]
        index1 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape)
        index2 = np.arange(
            self.numel(index_shape), dtype='int32').reshape(index_shape) + 2

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

            self.assertTrue(
                np.array_equal(y_t1.numpy(), y_np1),
                msg='\n numpy:{},\n paddle:{}'.format(y_np1, y_t1.numpy()))
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
            self.assertTrue(
                np.array_equal(y_t2.numpy(), y_np2),
                msg='\n numpy:{},\n paddle:{}'.format(y_np2, y_t2.numpy()))

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
            self.assertTrue(
                np.array_equal(tensor1.numpy(), array1),
                msg='\n numpy:{},\n paddle:{}'.format(array1, tensor1.numpy()))
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

            self.assertTrue(
                np.array_equal(tensor2.numpy(), array2),
                msg='\n numpy:{},\n paddle:{}'.format(array2, tensor2.numpy()))

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
973 974
if __name__ == '__main__':
    unittest.main()