test_recommender_system.py 12.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
武毅 已提交
16
import os
17 18 19
import sys
import tempfile

Q
Qiao Longfei 已提交
20
import numpy as np
21

22
import paddle
23 24 25 26 27 28
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
29

P
pangyoki 已提交
30 31
paddle.enable_static()

32 33
IS_SPARSE = True
USE_GPU = False
34 35 36 37 38 39 40 41 42
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
43
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
44

45 46 47 48 49 50 51
    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE,
    )
52

C
Charles-hit 已提交
53
    usr_fc = paddle.static.nn.fc(x=usr_emb, size=32)
54 55 56

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
57
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
58

59 60 61 62 63 64
    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE,
    )
65

C
Charles-hit 已提交
66
    usr_gender_fc = paddle.static.nn.fc(x=usr_gender_emb, size=16)
67 68

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
69
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
70

71 72 73 74 75 76
    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table',
    )
77

C
Charles-hit 已提交
78
    usr_age_fc = paddle.static.nn.fc(x=usr_age_emb, size=16)
79 80

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
81
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
82

83 84 85 86 87 88
    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE,
    )
89

C
Charles-hit 已提交
90
    usr_job_fc = paddle.static.nn.fc(x=usr_job_emb, size=16)
91 92

    concat_embed = layers.concat(
93 94
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1
    )
95

C
Charles-hit 已提交
96 97 98
    usr_combined_features = paddle.static.nn.fc(
        x=concat_embed, size=200, activation="tanh"
    )
99 100 101 102 103 104 105 106

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
107
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
108

109 110 111 112 113 114 115
    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE,
    )
116

C
Charles-hit 已提交
117
    mov_fc = paddle.static.nn.fc(x=mov_emb, size=32)
118 119 120

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

121 122 123
    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1
    )
124

125 126 127
    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
128

129 130 131
    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum"
    )
132 133 134

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

135 136 137
    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1
    )
138

139 140 141
    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
142

143 144 145 146 147 148 149
    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum",
    )
150 151

    concat_embed = layers.concat(
152 153
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1
    )
154 155

    # FIXME(dzh) : need tanh operator
C
Charles-hit 已提交
156 157 158
    mov_combined_features = paddle.static.nn.fc(
        x=concat_embed, size=200, activation="tanh"
    )
159 160 161 162 163 164 165 166 167

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
C
ccrrong 已提交
168 169 170
    inference = paddle.nn.functional.cosine_similarity(
        x1=usr_combined_features, x2=mov_combined_features
    )
2
201716010711 已提交
171
    scale_infer = paddle.scale(x=inference, scale=5.0)
172

F
fengjiayi 已提交
173
    label = layers.data(name='score', shape=[1], dtype='float32')
174 175 176
    square_cost = paddle.nn.functional.square_error_cost(
        input=scale_infer, label=label
    )
177
    avg_cost = paddle.mean(square_cost)
178

179 180
    return scale_infer, avg_cost

181

武毅 已提交
182
def train(use_cuda, save_dirname, is_local=True):
183 184 185
    scale_infer, avg_cost = model()

    # test program
186
    test_program = fluid.default_main_program().clone(for_test=True)
187

Q
Qiao Longfei 已提交
188
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
189
    sgd_optimizer.minimize(avg_cost)
190

191
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
192 193 194

    exe = Executor(place)

195 196 197 198 199 200 201
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE,
    )
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE
    )
202

203
    feed_order = [
204 205 206 207 208 209 210 211
        'user_id',
        'gender_id',
        'age_id',
        'job_id',
        'movie_id',
        'category_id',
        'movie_title',
        'score',
212
    ]
213

武毅 已提交
214 215 216
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

217 218 219 220 221
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
222 223 224 225
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
226 227 228 229 230
                outs = exe.run(
                    program=main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost],
                )
武毅 已提交
231 232 233 234
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
235 236 237 238 239
                        avg_cost_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[avg_cost],
                        )
武毅 已提交
240 241 242 243 244 245 246 247
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
248
                            fluid.io.save_inference_model(
249 250 251 252 253 254 255 256 257 258 259 260 261
                                save_dirname,
                                [
                                    "user_id",
                                    "gender_id",
                                    "age_id",
                                    "job_id",
                                    "movie_id",
                                    "category_id",
                                    "movie_title",
                                ],
                                [scale_infer],
                                exe,
                            )
武毅 已提交
262 263 264 265 266 267 268 269
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
270 271
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
272 273 274 275
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
276
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
277
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
278 279
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
280
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
281
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
282 283
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
284 285 286
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
287 288 289 290
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
291 292


293 294 295 296 297 298 299
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

300 301 302
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
303
        # the feed_target_names (the names of variables that will be fed
304 305
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
306 307 308 309 310
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
311 312 313

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
314 315 316
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
317
        # (lod) info associated with `data`.
318 319
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
320 321 322
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
323
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
324 325

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
326
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
327 328

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
329
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
330 331

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
332
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
333 334

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
335
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
336 337

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
338
        category_id = fluid.create_lod_tensor(
339 340
            [np.array([10, 8, 9], dtype='int64')], [[3]], place
        )
341 342

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
343
        movie_title = fluid.create_lod_tensor(
344 345 346 347
            [np.array([1069, 4140, 2923, 710, 988], dtype='int64')],
            [[5]],
            place,
        )
348 349 350

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
351 352 353 354 355 356 357 358 359 360 361 362 363 364
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: user_id,
                feed_target_names[1]: gender_id,
                feed_target_names[2]: age_id,
                feed_target_names[3]: job_id,
                feed_target_names[4]: movie_id,
                feed_target_names[5]: category_id,
                feed_target_names[6]: movie_title,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
365
        print("inferred score: ", np.array(results[0]))
366 367 368 369 370 371 372


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
373
    temp_dir = tempfile.TemporaryDirectory()
374 375 376
    save_dirname = os.path.join(
        temp_dir.name, "recommender_system.inference.model"
    )
377 378 379

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)
380
    temp_dir.cleanup()
381 382 383 384


if __name__ == '__main__':
    main(USE_GPU)