test_recommender_system.py 12.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import math
import sys
武毅 已提交
19
import os
Q
Qiao Longfei 已提交
20
import numpy as np
21
import paddle
22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
26
import tempfile
27 28
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
29

P
pangyoki 已提交
30 31
paddle.enable_static()

32 33
IS_SPARSE = True
USE_GPU = False
34 35 36 37 38 39 40 41 42
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
43
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
44

45 46 47 48 49
    usr_emb = layers.embedding(input=uid,
                               dtype='float32',
                               size=[USR_DICT_SIZE, 32],
                               param_attr='user_table',
                               is_sparse=IS_SPARSE)
50

Q
Qiao Longfei 已提交
51
    usr_fc = layers.fc(input=usr_emb, size=32)
52 53 54

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
55
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
56

57 58 59 60
    usr_gender_emb = layers.embedding(input=usr_gender_id,
                                      size=[USR_GENDER_DICT_SIZE, 16],
                                      param_attr='gender_table',
                                      is_sparse=IS_SPARSE)
61

Q
Qiao Longfei 已提交
62
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
63 64

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
65
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
66

67 68 69 70
    usr_age_emb = layers.embedding(input=usr_age_id,
                                   size=[USR_AGE_DICT_SIZE, 16],
                                   is_sparse=IS_SPARSE,
                                   param_attr='age_table')
71

Q
Qiao Longfei 已提交
72
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
73 74

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
75
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
76

77 78 79 80
    usr_job_emb = layers.embedding(input=usr_job_id,
                                   size=[USR_JOB_DICT_SIZE, 16],
                                   param_attr='job_table',
                                   is_sparse=IS_SPARSE)
81

Q
Qiao Longfei 已提交
82
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
83 84

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
85
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
86

Q
Qiao Longfei 已提交
87
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
88 89 90 91 92 93 94 95

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
96
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
97

98 99 100 101 102
    mov_emb = layers.embedding(input=mov_id,
                               dtype='float32',
                               size=[MOV_DICT_SIZE, 32],
                               param_attr='movie_table',
                               is_sparse=IS_SPARSE)
103

Q
Qiao Longfei 已提交
104
    mov_fc = layers.fc(input=mov_emb, size=32)
105 106 107

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

108 109 110 111
    category_id = layers.data(name='category_id',
                              shape=[1],
                              dtype='int64',
                              lod_level=1)
112

113 114 115
    mov_categories_emb = layers.embedding(input=category_id,
                                          size=[CATEGORY_DICT_SIZE, 32],
                                          is_sparse=IS_SPARSE)
116

117 118
    mov_categories_hidden = layers.sequence_pool(input=mov_categories_emb,
                                                 pool_type="sum")
119 120 121

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

122 123 124 125
    mov_title_id = layers.data(name='movie_title',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
126

127 128 129
    mov_title_emb = layers.embedding(input=mov_title_id,
                                     size=[MOV_TITLE_DICT_SIZE, 32],
                                     is_sparse=IS_SPARSE)
130

131 132 133 134 135
    mov_title_conv = nets.sequence_conv_pool(input=mov_title_emb,
                                             num_filters=32,
                                             filter_size=3,
                                             act="tanh",
                                             pool_type="sum")
136 137

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
138
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
139 140

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
141
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
142 143 144 145 146 147 148 149 150

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
151
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
152
    scale_infer = layers.scale(x=inference, scale=5.0)
153

F
fengjiayi 已提交
154
    label = layers.data(name='score', shape=[1], dtype='float32')
T
typhoonzero 已提交
155
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
Y
Yu Yang 已提交
156
    avg_cost = layers.mean(square_cost)
157

158 159
    return scale_infer, avg_cost

160

武毅 已提交
161
def train(use_cuda, save_dirname, is_local=True):
162 163 164
    scale_infer, avg_cost = model()

    # test program
165
    test_program = fluid.default_main_program().clone(for_test=True)
166

Q
Qiao Longfei 已提交
167
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
168
    sgd_optimizer.minimize(avg_cost)
169

170
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
171 172 173

    exe = Executor(place)

174 175 176 177 178
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.movielens.train(), buf_size=8192),
                                batch_size=BATCH_SIZE)
    test_reader = paddle.batch(paddle.dataset.movielens.test(),
                               batch_size=BATCH_SIZE)
179

180 181 182 183
    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]
184

武毅 已提交
185 186 187
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

188 189 190 191 192
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
193 194 195 196 197
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(program=main_program,
198
                               feed=feeder.feed(data),
武毅 已提交
199 200 201 202 203
                               fetch_list=[avg_cost])
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
204 205 206
                        avg_cost_np = exe.run(program=test_program,
                                              feed=feeder.feed(test_data),
                                              fetch_list=[avg_cost])
武毅 已提交
207 208 209 210 211 212 213 214
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
215 216 217 218 219
                            fluid.io.save_inference_model(
                                save_dirname, [
                                    "user_id", "gender_id", "age_id", "job_id",
                                    "movie_id", "category_id", "movie_title"
                                ], [scale_infer], exe)
武毅 已提交
220 221 222 223 224 225 226 227
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
228 229
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
230 231 232 233
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
234
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
235
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
236 237
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
238
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
239
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
240 241 242 243 244 245 246 247
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
248 249


250 251 252 253 254 255 256
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

257 258 259
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
260
        # the feed_target_names (the names of variables that will be fed
261 262 263 264 265 266 267
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
268 269 270
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
271
        # (lod) info associated with `data`.
272 273
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
274 275 276
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
277
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
278 279

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
280
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
281 282

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
283
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
284 285

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
286
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
287 288

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
289
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
290 291

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
292
        category_id = fluid.create_lod_tensor(
293
            [np.array([10, 8, 9], dtype='int64')], [[3]], place)
294 295

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
296
        movie_title = fluid.create_lod_tensor(
297
            [np.array([1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
P
peizhilin 已提交
298
            place)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: user_id,
                              feed_target_names[1]: gender_id,
                              feed_target_names[2]: age_id,
                              feed_target_names[3]: job_id,
                              feed_target_names[4]: movie_id,
                              feed_target_names[5]: category_id,
                              feed_target_names[6]: movie_title
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
314
        print("inferred score: ", np.array(results[0]))
315 316 317 318 319 320 321


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
322 323 324
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(temp_dir.name,
                                "recommender_system.inference.model")
325 326 327

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)
328
    temp_dir.cleanup()
329 330 331 332


if __name__ == '__main__':
    main(USE_GPU)