test_recommender_system.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
武毅 已提交
16
import os
17 18 19
import sys
import tempfile

Q
Qiao Longfei 已提交
20
import numpy as np
21

22
import paddle
23 24 25 26 27 28
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
29

P
pangyoki 已提交
30 31
paddle.enable_static()

32 33
IS_SPARSE = True
USE_GPU = False
34 35 36 37 38 39 40 41 42
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
43
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
44

45 46 47 48 49 50 51
    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE,
    )
52

Q
Qiao Longfei 已提交
53
    usr_fc = layers.fc(input=usr_emb, size=32)
54 55 56

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
57
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
58

59 60 61 62 63 64
    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE,
    )
65

Q
Qiao Longfei 已提交
66
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
67 68

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
69
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
70

71 72 73 74 75 76
    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table',
    )
77

Q
Qiao Longfei 已提交
78
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
79 80

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
81
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
82

83 84 85 86 87 88
    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE,
    )
89

Q
Qiao Longfei 已提交
90
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
91 92

    concat_embed = layers.concat(
93 94
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1
    )
95

Q
Qiao Longfei 已提交
96
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
97 98 99 100 101 102 103 104

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
105
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
106

107 108 109 110 111 112 113
    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE,
    )
114

Q
Qiao Longfei 已提交
115
    mov_fc = layers.fc(input=mov_emb, size=32)
116 117 118

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

119 120 121
    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1
    )
122

123 124 125
    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
126

127 128 129
    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum"
    )
130 131 132

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

133 134 135
    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1
    )
136

137 138 139
    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
140

141 142 143 144 145 146 147
    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum",
    )
148 149

    concat_embed = layers.concat(
150 151
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1
    )
152 153

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
154
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
155 156 157 158 159 160 161 162 163

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
164
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
165
    scale_infer = layers.scale(x=inference, scale=5.0)
166

F
fengjiayi 已提交
167
    label = layers.data(name='score', shape=[1], dtype='float32')
T
typhoonzero 已提交
168
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
169
    avg_cost = paddle.mean(square_cost)
170

171 172
    return scale_infer, avg_cost

173

武毅 已提交
174
def train(use_cuda, save_dirname, is_local=True):
175 176 177
    scale_infer, avg_cost = model()

    # test program
178
    test_program = fluid.default_main_program().clone(for_test=True)
179

Q
Qiao Longfei 已提交
180
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
181
    sgd_optimizer.minimize(avg_cost)
182

183
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
184 185 186

    exe = Executor(place)

187 188 189 190 191 192 193
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE,
    )
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE
    )
194

195
    feed_order = [
196 197 198 199 200 201 202 203
        'user_id',
        'gender_id',
        'age_id',
        'job_id',
        'movie_id',
        'category_id',
        'movie_title',
        'score',
204
    ]
205

武毅 已提交
206 207 208
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

209 210 211 212 213
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
214 215 216 217
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
218 219 220 221 222
                outs = exe.run(
                    program=main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost],
                )
武毅 已提交
223 224 225 226
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
227 228 229 230 231
                        avg_cost_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[avg_cost],
                        )
武毅 已提交
232 233 234 235 236 237 238 239
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
240
                            fluid.io.save_inference_model(
241 242 243 244 245 246 247 248 249 250 251 252 253
                                save_dirname,
                                [
                                    "user_id",
                                    "gender_id",
                                    "age_id",
                                    "job_id",
                                    "movie_id",
                                    "category_id",
                                    "movie_title",
                                ],
                                [scale_infer],
                                exe,
                            )
武毅 已提交
254 255 256 257 258 259 260 261
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
262 263
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
264 265 266 267
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
268
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
269
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
270 271
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
272
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
273
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
274 275
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
276 277 278
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
279 280 281 282
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
283 284


285 286 287 288 289 290 291
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

292 293 294
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
295
        # the feed_target_names (the names of variables that will be fed
296 297
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
298 299 300 301 302
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
303 304 305

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
306 307 308
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
309
        # (lod) info associated with `data`.
310 311
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
312 313 314
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
315
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
316 317

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
318
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
319 320

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
321
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
322 323

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
324
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
325 326

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
327
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
328 329

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
330
        category_id = fluid.create_lod_tensor(
331 332
            [np.array([10, 8, 9], dtype='int64')], [[3]], place
        )
333 334

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
335
        movie_title = fluid.create_lod_tensor(
336 337 338 339
            [np.array([1069, 4140, 2923, 710, 988], dtype='int64')],
            [[5]],
            place,
        )
340 341 342

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
343 344 345 346 347 348 349 350 351 352 353 354 355 356
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: user_id,
                feed_target_names[1]: gender_id,
                feed_target_names[2]: age_id,
                feed_target_names[3]: job_id,
                feed_target_names[4]: movie_id,
                feed_target_names[5]: category_id,
                feed_target_names[6]: movie_title,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
357
        print("inferred score: ", np.array(results[0]))
358 359 360 361 362 363 364


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
365
    temp_dir = tempfile.TemporaryDirectory()
366 367 368
    save_dirname = os.path.join(
        temp_dir.name, "recommender_system.inference.model"
    )
369 370 371

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)
372
    temp_dir.cleanup()
373 374 375 376


if __name__ == '__main__':
    main(USE_GPU)