initializer.py 30.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18 19
from . import core
from .framework import in_dygraph_mode
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25

26
__all__ = [
27
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
28 29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
    'MSRAInitializer', 'NumpyArrayInitializer'
31
]
32 33 34 35 36 37 38 39 40 41 42


class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
43
    def __init__(self):
44 45 46 47 48 49 50
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

86 87 88

class ConstantInitializer(Initializer):
    """Implements the constant initializer
89 90

    Args:
D
Double_V 已提交
91
        value (float32): constant value to initialize the variable 
92 93 94 95

    Examples:
        .. code-block:: python

96
    	    import paddle.fluid as fluid
D
Double_V 已提交
97
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
98 99 100
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

101 102
    """

103
    def __init__(self, value=0.0, force_cpu=False):
104 105 106
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
107
        self._force_cpu = force_cpu
108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

137
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
138
        op = block._prepend_op(
139
            type="fill_constant",
140
            outputs={"Out": out_var},
141 142
            attrs={
                "shape": var.shape,
143
                "dtype": int(out_dtype),
144
                "value": float(self._value),
145
                'force_cpu': self._force_cpu
M
minqiyang 已提交
146 147
            },
            stop_gradient=True)
148 149 150 151 152 153 154 155 156

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
157
        if not framework.in_dygraph_mode():
158
            var.op = op
159 160 161 162
        return op


class UniformInitializer(Initializer):
163
    """Implements the random uniform distribution initializer
164 165 166 167 168

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
169 170 171 172 173 174
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
175 176 177 178

    Examples:
        .. code-block:: python

X
xiaoting 已提交
179
            import paddle.fluid as fluid
180
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
181
            fc = fluid.layers.fc(input=x, size=10,
182
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
183 184
    """

185 186 187 188 189 190 191
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
192 193
        assert low is not None
        assert high is not None
194
        assert high >= low
195
        assert seed is not None
196 197 198 199 200
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
201 202 203 204
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
205 206 207
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
208 209 210 211 212 213 214 215 216 217 218 219 220

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
221 222 223
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "uniform_random")

224
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
225 226
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
227

X
polish  
Xin Pan 已提交
228
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
229 230 231
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
232 233
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
234 235 236 237 238 239 240 241
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
242
        op = block._prepend_op(
243
            type="uniform_random",
244
            inputs={},
W
Wu Yi 已提交
245
            outputs={"Out": out_var},
246 247
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
248
                "dtype": out_dtype,
249 250
                "min": self._low,
                "max": self._high,
251 252 253 254
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
255 256
            },
            stop_gradient=True)
W
Wu Yi 已提交
257 258 259 260 261 262 263 264 265

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
266
        if not framework.in_dygraph_mode():
267
            var.op = op
268
        return op
269 270 271


class NormalInitializer(Initializer):
272 273 274 275 276 277 278 279 280 281
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
282
            import paddle.fluid as fluid
283
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
284 285
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
310 311 312

        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "guassian_random")
313
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
314 315
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
316 317 318 319 320

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
321 322
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
323 324 325 326 327 328 329 330
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
331
        op = block._prepend_op(
332
            type="gaussian_random",
W
Wu Yi 已提交
333
            outputs={"Out": out_var},
334 335
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
336
                "dtype": out_dtype,
337 338
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
339 340
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
341 342
            },
            stop_gradient=True)
W
Wu Yi 已提交
343 344 345 346 347 348 349 350

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
351
        if not framework.in_dygraph_mode():
352
            var.op = op
353
        return op
354 355


356 357 358 359 360 361 362 363 364 365 366
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
367
            import paddle.fluid as fluid
368
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
369 370 371 372 373 374 375 376
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
377
        super(TruncatedNormalInitializer, self).__init__()
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
398 399 400 401 402 403

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
404
                    ['truncated_gaussian_random', var.name, 'tmp'])),
405 406 407 408 409 410 411 412
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

413 414
        op = block._prepend_op(
            type="truncated_gaussian_random",
415
            outputs={"Out": out_var},
416 417
            attrs={
                "shape": var.shape,
418
                "dtype": out_dtype,
419 420 421
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
422 423
            },
            stop_gradient=True)
424 425 426 427 428 429 430 431

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
432
        if not framework.in_dygraph_mode():
433
            var.op = op
434 435 436
        return op


437
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
438
    """
439
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
440 441 442
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
443 444 445

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
446 447 448 449 450 451
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

452
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
453
    is
454

Q
qiaolongfei 已提交
455
    .. math::
456

Q
qiaolongfei 已提交
457
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
458 459


Q
qiaolongfei 已提交
460
    Args:
X
xiaoting 已提交
461 462
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
463
                inferred from the variable.
X
xiaoting 已提交
464
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
465 466 467 468 469 470 471 472 473
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
474
            import paddle.fluid as fluid
X
xiaoting 已提交
475
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
476 477 478 479 480 481 482
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
503 504 505
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "xavier_init")

506 507 508 509 510 511
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
512 513 514
        if self._seed == 0:
            self._seed = block.program.random_seed

515 516 517 518 519 520 521 522 523 524 525 526 527 528
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

529 530
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
531
            op = block._prepend_op(
532
                type="uniform_random",
533
                inputs={},
534
                outputs={"Out": out_var},
535
                attrs={
536 537
                    "shape": out_var.shape,
                    "dtype": out_dtype,
538 539 540
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
541 542
                },
                stop_gradient=True)
543 544 545

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
546
            op = block._prepend_op(
547
                type="gaussian_random",
548
                outputs={"Out": out_var},
549
                attrs={
550 551
                    "shape": out_var.shape,
                    "dtype": out_dtype,
552 553 554
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
555 556
                },
                stop_gradient=True)
557 558 559 560 561 562 563 564 565

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
566
        if not framework.in_dygraph_mode():
567
            var.op = op
568
        return op
569 570 571 572 573 574


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
594 595 596
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
597 598 599 600 601 602

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
603 604

            import paddle.fluid as fluid
D
Double_V 已提交
605
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
606 607
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
639 640 641
        if self._seed == 0:
            self._seed = block.program.random_seed

642 643 644 645 646 647 648 649 650 651 652 653 654 655
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

656 657
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
658
            op = block._prepend_op(
659
                type="uniform_random",
660
                inputs={},
661
                outputs={"Out": out_var},
662
                attrs={
663 664
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
665 666 667
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
668 669
                },
                stop_gradient=True)
670 671 672

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
673
            op = block._prepend_op(
674
                type="gaussian_random",
675
                outputs={"Out": out_var},
676
                attrs={
677 678
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
679 680 681
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
682 683
                },
                stop_gradient=True)
684 685 686 687 688 689 690 691 692

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
693
        if not framework.in_dygraph_mode():
694
            var.op = op
695
        return op
696 697


698
class BilinearInitializer(Initializer):
699
    """
700 701 702
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
703 704 705 706 707

    Examples:

        .. code-block:: python

X
xsrobin 已提交
708
            import paddle.fluid as fluid
709
            import math
X
xsrobin 已提交
710 711
            factor = 2
            C = 2
D
Double_V 已提交
712 713
            B = 8
            H = W = 32
X
xsrobin 已提交
714 715 716
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
717
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
718
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
719 720 721 722 723 724 725 726 727 728 729
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
730 731

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
732 733 734 735 736
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
737 738
    interpolation unchanged during training.

739 740 741 742 743 744 745 746
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
T
tianshuo78520a 已提交
747
        """Add bilinear initialization ops for a variable
748 749 750 751 752 753 754

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
755
            Operator: the initialization op
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
801 802 803 804 805 806 807 808
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
809
            outputs={'Out': [out_var]},
810
            attrs={
811
                'dtype': out_dtype,
812 813 814
                'shape': list(shape),
                value_name: values
            })
815 816 817 818 819 820 821 822 823

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
824
        if not framework.in_dygraph_mode():
825
            var.op = op
826 827 828
        return op


829 830
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
831
    This op initialize the variable by numpy array.
832 833 834 835

    Args:
        value (numpy): numpy array to initialize the variable

836 837 838
    Returns:
        A Tensor variable initialized by numpy.

839 840 841
    Examples:
        .. code-block:: python

842
            import paddle.fluid as fluid
843 844
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

885
        # Initialization Ops should be prepended and not appended
886
        if out_dtype == VarDesc.VarType.FP32:
887
            value_name = "fp32_values"
888 889
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
890
            value_name = "int32_values"
891
            values = [int(v) for v in np_value.flat]
892 893
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
894
        if self._value.size > 1024 * 1024 * 1024:
895 896 897 898
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
899
            outputs={'Out': out_var},
900
            attrs={
901
                'dtype': out_dtype,
902
                'shape': list(self._value.shape),
903 904 905
                value_name: values
            },
            stop_gradient=True)
906 907 908 909 910 911 912 913 914

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
915
        if not framework.in_dygraph_mode():
916
            var.op = op
917 918 919
        return op


920 921 922 923 924 925 926 927 928 929 930 931
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
932
TruncatedNormal = TruncatedNormalInitializer
933 934
Xavier = XavierInitializer
MSRA = MSRAInitializer
935
Bilinear = BilinearInitializer