shuffle_channel_op.cc 4.5 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
S
shippingwang 已提交
22
    PADDLE_ENFORCE(ctx->HasInput("X"),
S
shippingwang 已提交
23
                   "Input(X) of ShuffleChannelOp should not be null.");
S
shippingwang 已提交
24
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
shippingwang 已提交
25 26 27 28 29 30 31
                   "Output(Out) of ShuffleChannelOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
32 33 34 35 36 37 38

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
shippingwang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
          PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
        });

    AddComment(R"DOC(
		Shuffle Channel operator
		This operator obtains the group convolutional layer with channels shuffled.
S
shippingwang 已提交
59
		Firstly, divide the input channels in each group into several subgroups,
S
shippingwang 已提交
60 61
		then, feed each group in the next layer with different subgroups.

S
shippingwang 已提交
62 63
		According to the paper, "Suppose a convolution layer with G groups
		whose output has (G * N) channels, first reshape the output channel dimension into(G,N),
S
shippingwang 已提交
64 65 66 67 68 69 70 71 72 73 74
		transposing and then flattening it back as the input of next layer. "

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.

		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
75
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
76 77 78 79 80
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
S
shippingwang 已提交
81
                   "Input(Out@Grad) should not be null");
S
shippingwang 已提交
82 83 84 85
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad) should not be null");

    auto input_dims = ctx->GetInputDim("X");
S
shippingwang 已提交
86 87
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

S
shippingwang 已提交
88 89
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
90 91 92 93 94 95 96

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
shippingwang 已提交
97 98 99 100 101 102
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
103
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
S
shippingwang 已提交
104 105 106
                  ops::ShuffleChannelOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

S
shippingwang 已提交
107
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
108 109

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
110
    shuffle_channel,
S
shippingwang 已提交
111 112 113 114
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
115
    shuffle_channel_grad,
S
shippingwang 已提交
116 117 118
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);