shuffle_channel_op.cc 4.7 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
S
shippingwang 已提交
22
    PADDLE_ENFORCE(ctx->HasInput("X"),
S
shippingwang 已提交
23
                   "Input(X) of ShuffleChannelOp should not be null.");
S
shippingwang 已提交
24
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
shippingwang 已提交
25 26 27 28 29 30
                   "Output(Out) of ShuffleChannelOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    // ENFORCE group
S
shippingwang 已提交
31

S
shippingwang 已提交
32 33
    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
34 35 36 37 38 39 40 41 42
  /*
   protected:
    framework::OpKernelType GetExpectedKernelType(
        const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
          framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
    }
  */
S
shippingwang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
          PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
        });

    AddComment(R"DOC(
		Shuffle Channel operator
		This operator obtains the group convolutional layer with channels shuffled.
		First, divide the input channels in each group into several subgroups,
		then, feed each group in the next layer with different subgroups.

		According to the paper, "Suppose a convolution layer with g groups
S
shippingwang 已提交
67
		whose output has g * n channels, first reshape the output channel dimension into(g,n),
S
shippingwang 已提交
68 69 70 71 72 73 74 75 76 77 78
		transposing and then flattening it back as the input of next layer. "

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.

		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
79
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
80 81 82 83 84
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
S
shippingwang 已提交
85
                   "Input(Out@Grad) should not be null");
S
shippingwang 已提交
86 87 88 89
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad) should not be null");

    auto input_dims = ctx->GetInputDim("X");
S
shippingwang 已提交
90 91 92 93
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    // ENFORCE group

S
shippingwang 已提交
94 95
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
96 97 98 99 100 101 102 103 104 105
  /*
   protected:
    framework::OpKernelType GetExpectedKernelType(
        const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
          framework::ToDataType(
                  framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
    }
  */
S
shippingwang 已提交
106 107 108 109 110 111
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
112
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
S
shippingwang 已提交
113 114 115 116
                  ops::ShuffleChannelOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
//     paddle::framework::EmptyGradOpMaker);

S
shippingwang 已提交
117
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
118 119

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
120
    shuffle_channel,
S
shippingwang 已提交
121 122 123 124
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
125
    shuffle_channel_grad,
S
shippingwang 已提交
126 127 128
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);