shuffle_channel_op.cc 4.6 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
S
shippingwang 已提交
22
    PADDLE_ENFORCE(ctx->HasInput("X"),
S
shippingwang 已提交
23
                   "Input(X) of ShuffleChannelOp should not be null.");
S
shippingwang 已提交
24
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
shippingwang 已提交
25 26 27 28 29 30 31
                   "Output(Out) of ShuffleChannelOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
32 33 34 35 36 37 38 39 40
  /*
   protected:
    framework::OpKernelType GetExpectedKernelType(
        const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
          framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
    }
  */
S
shippingwang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
          PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
        });

    AddComment(R"DOC(
		Shuffle Channel operator
		This operator obtains the group convolutional layer with channels shuffled.
S
shippingwang 已提交
61
		Firstly, divide the input channels in each group into several subgroups,
S
shippingwang 已提交
62 63
		then, feed each group in the next layer with different subgroups.

S
shippingwang 已提交
64 65
		According to the paper, "Suppose a convolution layer with G groups
		whose output has (G * N) channels, first reshape the output channel dimension into(G,N),
S
shippingwang 已提交
66 67 68 69 70 71 72 73 74 75 76
		transposing and then flattening it back as the input of next layer. "

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.

		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
77
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
78 79 80 81 82
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
S
shippingwang 已提交
83
                   "Input(Out@Grad) should not be null");
S
shippingwang 已提交
84 85 86 87
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad) should not be null");

    auto input_dims = ctx->GetInputDim("X");
S
shippingwang 已提交
88 89
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

S
shippingwang 已提交
90 91
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
92 93 94 95 96 97 98 99 100 101
  /*
   protected:
    framework::OpKernelType GetExpectedKernelType(
        const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
          framework::ToDataType(
                  framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
    }
  */
S
shippingwang 已提交
102 103 104 105 106 107
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
108
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
S
shippingwang 已提交
109 110 111
                  ops::ShuffleChannelOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

S
shippingwang 已提交
112
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
113 114

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
115
    shuffle_channel,
S
shippingwang 已提交
116 117 118 119
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
120
    shuffle_channel_grad,
S
shippingwang 已提交
121 122 123
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);