mobilenetv2.py 6.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
L
LielinJiang 已提交
16
import paddle.nn as nn
17
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
18

N
Nyakku Shigure 已提交
19
from .utils import _make_divisible
20
from ..ops import ConvNormActivation
N
Nyakku Shigure 已提交
21

22
__all__ = []
L
LielinJiang 已提交
23 24 25 26

model_urls = {
    'mobilenetv2_1.0':
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
L
LielinJiang 已提交
27
     '0340af0a901346c8d46f4529882fb63d')
L
LielinJiang 已提交
28 29 30
}


L
LielinJiang 已提交
31
class InvertedResidual(nn.Layer):
L
LielinJiang 已提交
32
    def __init__(self,
L
LielinJiang 已提交
33 34 35 36
                 inp,
                 oup,
                 stride,
                 expand_ratio,
C
cnn 已提交
37
                 norm_layer=nn.BatchNorm2D):
L
LielinJiang 已提交
38 39 40 41 42 43 44 45 46 47
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            layers.append(
48 49 50 51 52 53
                ConvNormActivation(
                    inp,
                    hidden_dim,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=nn.ReLU6))
L
LielinJiang 已提交
54
        layers.extend([
55
            ConvNormActivation(
L
LielinJiang 已提交
56 57 58 59
                hidden_dim,
                hidden_dim,
                stride=stride,
                groups=hidden_dim,
60 61
                norm_layer=norm_layer,
                activation_layer=nn.ReLU6),
C
cnn 已提交
62
            nn.Conv2D(
L
LielinJiang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
                hidden_dim, oup, 1, 1, 0, bias_attr=False),
            norm_layer(oup),
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Layer):
76 77 78 79 80 81 82 83
    """MobileNetV2 model from
    `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.

    Args:
        scale (float): scale of channels in each layer. Default: 1.0.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.
L
LielinJiang 已提交
84

85 86 87 88 89
    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import MobileNetV2
L
LielinJiang 已提交
90

91
            model = MobileNetV2()
L
LielinJiang 已提交
92

93 94 95 96 97
            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
    """
L
LielinJiang 已提交
98

99
    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
L
LielinJiang 已提交
100 101 102
        super(MobileNetV2, self).__init__()
        self.num_classes = num_classes
        self.with_pool = with_pool
L
LielinJiang 已提交
103 104 105 106 107
        input_channel = 32
        last_channel = 1280

        block = InvertedResidual
        round_nearest = 8
C
cnn 已提交
108
        norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117
        inverted_residual_setting = [
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]
L
LielinJiang 已提交
118

L
LielinJiang 已提交
119 120 121 122
        input_channel = _make_divisible(input_channel * scale, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, scale),
                                            round_nearest)
        features = [
123 124 125 126 127 128
            ConvNormActivation(
                3,
                input_channel,
                stride=2,
                norm_layer=norm_layer,
                activation_layer=nn.ReLU6)
L
LielinJiang 已提交
129 130
        ]

L
LielinJiang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * scale, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(
                    block(
                        input_channel,
                        output_channel,
                        stride,
                        expand_ratio=t,
                        norm_layer=norm_layer))
                input_channel = output_channel

        features.append(
145
            ConvNormActivation(
L
LielinJiang 已提交
146 147 148
                input_channel,
                self.last_channel,
                kernel_size=1,
149 150
                norm_layer=norm_layer,
                activation_layer=nn.ReLU6))
L
LielinJiang 已提交
151 152

        self.features = nn.Sequential(*features)
L
LielinJiang 已提交
153 154

        if with_pool:
C
cnn 已提交
155
            self.pool2d_avg = nn.AdaptiveAvgPool2D(1)
L
LielinJiang 已提交
156 157 158 159 160 161 162

        if self.num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))

    def forward(self, x):
        x = self.features(x)
L
LielinJiang 已提交
163 164

        if self.with_pool:
L
LielinJiang 已提交
165 166
            x = self.pool2d_avg(x)

L
LielinJiang 已提交
167
        if self.num_classes > 0:
L
LielinJiang 已提交
168 169 170
            x = paddle.flatten(x, 1)
            x = self.classifier(x)
        return x
L
LielinJiang 已提交
171 172 173 174 175 176 177 178 179


def _mobilenet(arch, pretrained=False, **kwargs):
    model = MobileNetV2(**kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
180 181

        param = paddle.load(weight_path)
182
        model.load_dict(param)
L
LielinJiang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196

    return model


def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV2
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

197
            import paddle
198
            from paddle.vision.models import mobilenet_v2
L
LielinJiang 已提交
199 200 201 202 203 204 205 206 207

            # build model
            model = mobilenet_v2()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v2(pretrained=True)

            # build mobilenet v2 with scale=0.5
            model = mobilenet_v2(scale=0.5)
208 209 210 211 212

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
L
LielinJiang 已提交
213 214 215 216
    """
    model = _mobilenet(
        'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
    return model