mobilenetv2.py 6.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
L
LielinJiang 已提交
16
import paddle.nn as nn
17
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
18

N
Nyakku Shigure 已提交
19 20
from .utils import _make_divisible

21
__all__ = []
L
LielinJiang 已提交
22 23 24 25

model_urls = {
    'mobilenetv2_1.0':
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
L
LielinJiang 已提交
26
     '0340af0a901346c8d46f4529882fb63d')
L
LielinJiang 已提交
27 28 29
}


L
LielinJiang 已提交
30 31 32 33 34 35 36
class ConvBNReLU(nn.Sequential):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=3,
                 stride=1,
                 groups=1,
C
cnn 已提交
37
                 norm_layer=nn.BatchNorm2D):
L
LielinJiang 已提交
38 39 40
        padding = (kernel_size - 1) // 2

        super(ConvBNReLU, self).__init__(
C
cnn 已提交
41
            nn.Conv2D(
L
LielinJiang 已提交
42 43 44 45 46 47 48 49 50 51 52 53
                in_planes,
                out_planes,
                kernel_size,
                stride,
                padding,
                groups=groups,
                bias_attr=False),
            norm_layer(out_planes),
            nn.ReLU6())


class InvertedResidual(nn.Layer):
L
LielinJiang 已提交
54
    def __init__(self,
L
LielinJiang 已提交
55 56 57 58
                 inp,
                 oup,
                 stride,
                 expand_ratio,
C
cnn 已提交
59
                 norm_layer=nn.BatchNorm2D):
L
LielinJiang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            layers.append(
                ConvBNReLU(
                    inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
        layers.extend([
            ConvBNReLU(
                hidden_dim,
                hidden_dim,
                stride=stride,
                groups=hidden_dim,
                norm_layer=norm_layer),
C
cnn 已提交
79
            nn.Conv2D(
L
LielinJiang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                hidden_dim, oup, 1, 1, 0, bias_attr=False),
            norm_layer(oup),
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Layer):
    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        """MobileNetV2 model from
        `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.

        Args:
            scale (float): scale of channels in each layer. Default: 1.0.
            num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                                will not be defined. Default: 1000.
            with_pool (bool): use pool before the last fc layer or not. Default: True.

        Examples:
            .. code-block:: python

                from paddle.vision.models import MobileNetV2

                model = MobileNetV2()
        """
L
LielinJiang 已提交
110 111 112
        super(MobileNetV2, self).__init__()
        self.num_classes = num_classes
        self.with_pool = with_pool
L
LielinJiang 已提交
113 114 115 116 117
        input_channel = 32
        last_channel = 1280

        block = InvertedResidual
        round_nearest = 8
C
cnn 已提交
118
        norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
119 120 121 122 123 124 125 126 127
        inverted_residual_setting = [
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]
L
LielinJiang 已提交
128

L
LielinJiang 已提交
129 130 131 132 133 134
        input_channel = _make_divisible(input_channel * scale, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, scale),
                                            round_nearest)
        features = [
            ConvBNReLU(
                3, input_channel, stride=2, norm_layer=norm_layer)
L
LielinJiang 已提交
135 136
        ]

L
LielinJiang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * scale, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(
                    block(
                        input_channel,
                        output_channel,
                        stride,
                        expand_ratio=t,
                        norm_layer=norm_layer))
                input_channel = output_channel

        features.append(
            ConvBNReLU(
                input_channel,
                self.last_channel,
                kernel_size=1,
                norm_layer=norm_layer))

        self.features = nn.Sequential(*features)
L
LielinJiang 已提交
158 159

        if with_pool:
C
cnn 已提交
160
            self.pool2d_avg = nn.AdaptiveAvgPool2D(1)
L
LielinJiang 已提交
161 162 163 164 165 166 167

        if self.num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))

    def forward(self, x):
        x = self.features(x)
L
LielinJiang 已提交
168 169

        if self.with_pool:
L
LielinJiang 已提交
170 171
            x = self.pool2d_avg(x)

L
LielinJiang 已提交
172
        if self.num_classes > 0:
L
LielinJiang 已提交
173 174 175
            x = paddle.flatten(x, 1)
            x = self.classifier(x)
        return x
L
LielinJiang 已提交
176 177 178 179 180 181 182 183 184


def _mobilenet(arch, pretrained=False, **kwargs):
    model = MobileNetV2(**kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
185 186

        param = paddle.load(weight_path)
187
        model.load_dict(param)
L
LielinJiang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201

    return model


def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV2
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

202
            from paddle.vision.models import mobilenet_v2
L
LielinJiang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215

            # build model
            model = mobilenet_v2()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v2(pretrained=True)

            # build mobilenet v2 with scale=0.5
            model = mobilenet_v2(scale=0.5)
    """
    model = _mobilenet(
        'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
    return model