Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
68af310b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
68af310b
编写于
3月 09, 2022
作者:
N
Nyakku Shigure
提交者:
GitHub
3月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add MobileNetV3 (#38653)
* add mobilenetv3
上级
767647ce
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
554 addition
and
15 deletion
+554
-15
python/paddle/tests/test_pretrained_model.py
python/paddle/tests/test_pretrained_model.py
+2
-0
python/paddle/tests/test_vision_models.py
python/paddle/tests/test_vision_models.py
+6
-0
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+4
-0
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+8
-0
python/paddle/vision/models/mobilenetv2.py
python/paddle/vision/models/mobilenetv2.py
+2
-14
python/paddle/vision/models/mobilenetv3.py
python/paddle/vision/models/mobilenetv3.py
+445
-0
python/paddle/vision/models/utils.py
python/paddle/vision/models/utils.py
+32
-0
python/paddle/vision/ops.py
python/paddle/vision/ops.py
+55
-1
未找到文件。
python/paddle/tests/test_pretrained_model.py
浏览文件 @
68af310b
...
...
@@ -61,6 +61,8 @@ class TestPretrainedModel(unittest.TestCase):
arches
=
[
'mobilenet_v1'
,
'mobilenet_v2'
,
'mobilenet_v3_small'
,
'mobilenet_v3_large'
,
'squeezenet1_0'
,
'shufflenet_v2_x0_25'
,
]
...
...
python/paddle/tests/test_vision_models.py
浏览文件 @
68af310b
...
...
@@ -40,6 +40,12 @@ class TestVisonModels(unittest.TestCase):
def
test_mobilenetv1
(
self
):
self
.
models_infer
(
'mobilenet_v1'
)
def
test_mobilenetv3_small
(
self
):
self
.
models_infer
(
'mobilenet_v3_small'
)
def
test_mobilenetv3_large
(
self
):
self
.
models_infer
(
'mobilenet_v3_large'
)
def
test_vgg11
(
self
):
self
.
models_infer
(
'vgg11'
)
...
...
python/paddle/vision/__init__.py
浏览文件 @
68af310b
...
...
@@ -40,6 +40,10 @@ from .models import MobileNetV1 # noqa: F401
from
.models
import
mobilenet_v1
# noqa: F401
from
.models
import
MobileNetV2
# noqa: F401
from
.models
import
mobilenet_v2
# noqa: F401
from
.models
import
MobileNetV3Small
# noqa: F401
from
.models
import
MobileNetV3Large
# noqa: F401
from
.models
import
mobilenet_v3_small
# noqa: F401
from
.models
import
mobilenet_v3_large
# noqa: F401
from
.models
import
SqueezeNet
# noqa: F401
from
.models
import
squeezenet1_0
# noqa: F401
from
.models
import
squeezenet1_1
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
68af310b
...
...
@@ -24,6 +24,10 @@ from .mobilenetv1 import MobileNetV1 # noqa: F401
from
.mobilenetv1
import
mobilenet_v1
# noqa: F401
from
.mobilenetv2
import
MobileNetV2
# noqa: F401
from
.mobilenetv2
import
mobilenet_v2
# noqa: F401
from
.mobilenetv3
import
MobileNetV3Small
# noqa: F401
from
.mobilenetv3
import
MobileNetV3Large
# noqa: F401
from
.mobilenetv3
import
mobilenet_v3_small
# noqa: F401
from
.mobilenetv3
import
mobilenet_v3_large
# noqa: F401
from
.vgg
import
VGG
# noqa: F401
from
.vgg
import
vgg11
# noqa: F401
from
.vgg
import
vgg13
# noqa: F401
...
...
@@ -79,6 +83,10 @@ __all__ = [ #noqa
'mobilenet_v1'
,
'MobileNetV2'
,
'mobilenet_v2'
,
'MobileNetV3Small'
,
'MobileNetV3Large'
,
'mobilenet_v3_small'
,
'mobilenet_v3_large'
,
'LeNet'
,
'DenseNet'
,
'densenet121'
,
...
...
python/paddle/vision/models/mobilenetv2.py
浏览文件 @
68af310b
...
...
@@ -12,14 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.utils.download
import
get_weights_path_from_url
from
.utils
import
_make_divisible
__all__
=
[]
model_urls
=
{
...
...
@@ -29,16 +27,6 @@ model_urls = {
}
def
_make_divisible
(
v
,
divisor
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
class
ConvBNReLU
(
nn
.
Sequential
):
def
__init__
(
self
,
in_planes
,
...
...
python/paddle/vision/models/mobilenetv3.py
0 → 100644
浏览文件 @
68af310b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn
as
nn
from
paddle.utils.download
import
get_weights_path_from_url
from
functools
import
partial
from
.utils
import
_make_divisible
from
..ops
import
ConvNormActivation
__all__
=
[]
model_urls
=
{
"mobilenet_v3_small_x1.0"
:
(
"https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_small_x1.0.pdparams"
,
"34fe0e7c1f8b00b2b056ad6788d0590c"
),
"mobilenet_v3_large_x1.0"
:
(
"https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_large_x1.0.pdparams"
,
"118db5792b4e183b925d8e8e334db3df"
),
}
class
SqueezeExcitation
(
nn
.
Layer
):
"""
This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in in eq. 3.
This code is based on the torchvision code with modifications.
You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127
Args:
input_channels (int): Number of channels in the input image
squeeze_channels (int): Number of squeeze channels
activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU``
scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid``
"""
def
__init__
(
self
,
input_channels
,
squeeze_channels
,
activation
=
nn
.
ReLU
,
scale_activation
=
nn
.
Sigmoid
):
super
().
__init__
()
self
.
avgpool
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
fc1
=
nn
.
Conv2D
(
input_channels
,
squeeze_channels
,
1
)
self
.
fc2
=
nn
.
Conv2D
(
squeeze_channels
,
input_channels
,
1
)
self
.
activation
=
activation
()
self
.
scale_activation
=
scale_activation
()
def
_scale
(
self
,
input
):
scale
=
self
.
avgpool
(
input
)
scale
=
self
.
fc1
(
scale
)
scale
=
self
.
activation
(
scale
)
scale
=
self
.
fc2
(
scale
)
return
self
.
scale_activation
(
scale
)
def
forward
(
self
,
input
):
scale
=
self
.
_scale
(
input
)
return
scale
*
input
class
InvertedResidualConfig
:
def
__init__
(
self
,
in_channels
,
kernel
,
expanded_channels
,
out_channels
,
use_se
,
activation
,
stride
,
scale
=
1.0
):
self
.
in_channels
=
self
.
adjust_channels
(
in_channels
,
scale
=
scale
)
self
.
kernel
=
kernel
self
.
expanded_channels
=
self
.
adjust_channels
(
expanded_channels
,
scale
=
scale
)
self
.
out_channels
=
self
.
adjust_channels
(
out_channels
,
scale
=
scale
)
self
.
use_se
=
use_se
if
activation
is
None
:
self
.
activation_layer
=
None
elif
activation
==
"relu"
:
self
.
activation_layer
=
nn
.
ReLU
elif
activation
==
"hardswish"
:
self
.
activation_layer
=
nn
.
Hardswish
else
:
raise
RuntimeError
(
"The activation function is not supported: {}"
.
format
(
activation
))
self
.
stride
=
stride
@
staticmethod
def
adjust_channels
(
channels
,
scale
=
1.0
):
return
_make_divisible
(
channels
*
scale
,
8
)
class
InvertedResidual
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
expanded_channels
,
out_channels
,
filter_size
,
stride
,
use_se
,
activation_layer
,
norm_layer
):
super
().
__init__
()
self
.
use_res_connect
=
stride
==
1
and
in_channels
==
out_channels
self
.
use_se
=
use_se
self
.
expand
=
in_channels
!=
expanded_channels
if
self
.
expand
:
self
.
expand_conv
=
ConvNormActivation
(
in_channels
=
in_channels
,
out_channels
=
expanded_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
norm_layer
=
norm_layer
,
activation_layer
=
activation_layer
)
self
.
bottleneck_conv
=
ConvNormActivation
(
in_channels
=
expanded_channels
,
out_channels
=
expanded_channels
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
groups
=
expanded_channels
,
norm_layer
=
norm_layer
,
activation_layer
=
activation_layer
)
if
self
.
use_se
:
self
.
mid_se
=
SqueezeExcitation
(
expanded_channels
,
_make_divisible
(
expanded_channels
//
4
),
scale_activation
=
nn
.
Hardsigmoid
)
self
.
linear_conv
=
ConvNormActivation
(
in_channels
=
expanded_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
norm_layer
=
norm_layer
,
activation_layer
=
None
)
def
forward
(
self
,
x
):
identity
=
x
if
self
.
expand
:
x
=
self
.
expand_conv
(
x
)
x
=
self
.
bottleneck_conv
(
x
)
if
self
.
use_se
:
x
=
self
.
mid_se
(
x
)
x
=
self
.
linear_conv
(
x
)
if
self
.
use_res_connect
:
x
=
paddle
.
add
(
identity
,
x
)
return
x
class
MobileNetV3
(
nn
.
Layer
):
"""MobileNetV3 model from
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args:
config (list[InvertedResidualConfig]): MobileNetV3 depthwise blocks config.
last_channel (int): The number of channels on the penultimate layer.
scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
"""
def
__init__
(
self
,
config
,
last_channel
,
scale
=
1.0
,
num_classes
=
1000
,
with_pool
=
True
):
super
().
__init__
()
self
.
config
=
config
self
.
scale
=
scale
self
.
last_channel
=
last_channel
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
self
.
firstconv_in_channels
=
config
[
0
].
in_channels
self
.
lastconv_in_channels
=
config
[
-
1
].
in_channels
self
.
lastconv_out_channels
=
self
.
lastconv_in_channels
*
6
norm_layer
=
partial
(
nn
.
BatchNorm2D
,
epsilon
=
0.001
,
momentum
=
0.99
)
self
.
conv
=
ConvNormActivation
(
in_channels
=
3
,
out_channels
=
self
.
firstconv_in_channels
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
groups
=
1
,
activation_layer
=
nn
.
Hardswish
,
norm_layer
=
norm_layer
)
self
.
blocks
=
nn
.
Sequential
(
*
[
InvertedResidual
(
in_channels
=
cfg
.
in_channels
,
expanded_channels
=
cfg
.
expanded_channels
,
out_channels
=
cfg
.
out_channels
,
filter_size
=
cfg
.
kernel
,
stride
=
cfg
.
stride
,
use_se
=
cfg
.
use_se
,
activation_layer
=
cfg
.
activation_layer
,
norm_layer
=
norm_layer
)
for
cfg
in
self
.
config
])
self
.
lastconv
=
ConvNormActivation
(
in_channels
=
self
.
lastconv_in_channels
,
out_channels
=
self
.
lastconv_out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
norm_layer
=
norm_layer
,
activation_layer
=
nn
.
Hardswish
)
if
with_pool
:
self
.
avgpool
=
nn
.
AdaptiveAvgPool2D
(
1
)
if
num_classes
>
0
:
self
.
classifier
=
nn
.
Sequential
(
nn
.
Linear
(
self
.
lastconv_out_channels
,
self
.
last_channel
),
nn
.
Hardswish
(),
nn
.
Dropout
(
p
=
0.2
),
nn
.
Linear
(
self
.
last_channel
,
num_classes
))
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
blocks
(
x
)
x
=
self
.
lastconv
(
x
)
if
self
.
with_pool
:
x
=
self
.
avgpool
(
x
)
if
self
.
num_classes
>
0
:
x
=
paddle
.
flatten
(
x
,
1
)
x
=
self
.
classifier
(
x
)
return
x
class
MobileNetV3Small
(
MobileNetV3
):
"""MobileNetV3 Small architecture model from
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import MobileNetV3Small
# build model
model = MobileNetV3Small(scale=1.0)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
def
__init__
(
self
,
scale
=
1.0
,
num_classes
=
1000
,
with_pool
=
True
):
config
=
[
InvertedResidualConfig
(
16
,
3
,
16
,
16
,
True
,
"relu"
,
2
,
scale
),
InvertedResidualConfig
(
16
,
3
,
72
,
24
,
False
,
"relu"
,
2
,
scale
),
InvertedResidualConfig
(
24
,
3
,
88
,
24
,
False
,
"relu"
,
1
,
scale
),
InvertedResidualConfig
(
24
,
5
,
96
,
40
,
True
,
"hardswish"
,
2
,
scale
),
InvertedResidualConfig
(
40
,
5
,
240
,
40
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
40
,
5
,
240
,
40
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
40
,
5
,
120
,
48
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
48
,
5
,
144
,
48
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
48
,
5
,
288
,
96
,
True
,
"hardswish"
,
2
,
scale
),
InvertedResidualConfig
(
96
,
5
,
576
,
96
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
96
,
5
,
576
,
96
,
True
,
"hardswish"
,
1
,
scale
),
]
last_channel
=
_make_divisible
(
1024
*
scale
,
8
)
super
().
__init__
(
config
,
last_channel
=
last_channel
,
scale
=
scale
,
with_pool
=
with_pool
,
num_classes
=
num_classes
)
class
MobileNetV3Large
(
MobileNetV3
):
"""MobileNetV3 Large architecture model from
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import MobileNetV3Large
# build model
model = MobileNetV3Large(scale=1.0)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
def
__init__
(
self
,
scale
=
1.0
,
num_classes
=
1000
,
with_pool
=
True
):
config
=
[
InvertedResidualConfig
(
16
,
3
,
16
,
16
,
False
,
"relu"
,
1
,
scale
),
InvertedResidualConfig
(
16
,
3
,
64
,
24
,
False
,
"relu"
,
2
,
scale
),
InvertedResidualConfig
(
24
,
3
,
72
,
24
,
False
,
"relu"
,
1
,
scale
),
InvertedResidualConfig
(
24
,
5
,
72
,
40
,
True
,
"relu"
,
2
,
scale
),
InvertedResidualConfig
(
40
,
5
,
120
,
40
,
True
,
"relu"
,
1
,
scale
),
InvertedResidualConfig
(
40
,
5
,
120
,
40
,
True
,
"relu"
,
1
,
scale
),
InvertedResidualConfig
(
40
,
3
,
240
,
80
,
False
,
"hardswish"
,
2
,
scale
),
InvertedResidualConfig
(
80
,
3
,
200
,
80
,
False
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
80
,
3
,
184
,
80
,
False
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
80
,
3
,
184
,
80
,
False
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
80
,
3
,
480
,
112
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
112
,
3
,
672
,
112
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
112
,
5
,
672
,
160
,
True
,
"hardswish"
,
2
,
scale
),
InvertedResidualConfig
(
160
,
5
,
960
,
160
,
True
,
"hardswish"
,
1
,
scale
),
InvertedResidualConfig
(
160
,
5
,
960
,
160
,
True
,
"hardswish"
,
1
,
scale
),
]
last_channel
=
_make_divisible
(
1280
*
scale
,
8
)
super
().
__init__
(
config
,
last_channel
=
last_channel
,
scale
=
scale
,
with_pool
=
with_pool
,
num_classes
=
num_classes
)
def
_mobilenet_v3
(
arch
,
pretrained
=
False
,
scale
=
1.0
,
**
kwargs
):
if
arch
==
"mobilenet_v3_large"
:
model
=
MobileNetV3Large
(
scale
=
scale
,
**
kwargs
)
else
:
model
=
MobileNetV3Small
(
scale
=
scale
,
**
kwargs
)
if
pretrained
:
arch
=
"{}_x{}"
.
format
(
arch
,
scale
)
assert
(
arch
in
model_urls
),
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
set_dict
(
param
)
return
model
def
mobilenet_v3_small
(
pretrained
=
False
,
scale
=
1.0
,
**
kwargs
):
"""MobileNetV3 Small architecture model from
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import mobilenet_v3_small
# build model
model = mobilenet_v3_small()
# build model and load imagenet pretrained weight
# model = mobilenet_v3_small(pretrained=True)
# build mobilenet v3 small model with scale=0.5
model = mobilenet_v3_small(scale=0.5)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
model
=
_mobilenet_v3
(
"mobilenet_v3_small"
,
scale
=
scale
,
pretrained
=
pretrained
,
**
kwargs
)
return
model
def
mobilenet_v3_large
(
pretrained
=
False
,
scale
=
1.0
,
**
kwargs
):
"""MobileNetV3 Large architecture model from
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import mobilenet_v3_large
# build model
model = mobilenet_v3_large()
# build model and load imagenet pretrained weight
# model = mobilenet_v3_large(pretrained=True)
# build mobilenet v3 large model with scale=0.5
model = mobilenet_v3_large(scale=0.5)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
model
=
_mobilenet_v3
(
"mobilenet_v3_large"
,
scale
=
scale
,
pretrained
=
pretrained
,
**
kwargs
)
return
model
python/paddle/vision/models/utils.py
0 → 100644
浏览文件 @
68af310b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def
_make_divisible
(
v
,
divisor
=
8
,
min_value
=
None
):
"""
This function ensures that all layers have a channel number that is divisible by divisor
You can also see at https://github.com/keras-team/keras/blob/8ecef127f70db723c158dbe9ed3268b3d610ab55/keras/applications/mobilenet_v2.py#L505
Args:
divisor (int): The divisor for number of channels. Default: 8.
min_value (int, optional): The minimum value of number of channels, if it is None,
the default is divisor. Default: None.
"""
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
python/paddle/vision/ops.py
浏览文件 @
68af310b
...
...
@@ -17,7 +17,7 @@ from ..fluid.layer_helper import LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid
import
core
,
layers
from
..fluid.layers
import
nn
,
utils
from
..nn
import
Layer
from
..nn
import
Layer
,
Conv2D
,
Sequential
,
ReLU
,
BatchNorm2D
from
..fluid.initializer
import
Normal
from
paddle.common_ops_import
import
*
...
...
@@ -1297,3 +1297,57 @@ class RoIAlign(Layer):
output_size
=
self
.
_output_size
,
spatial_scale
=
self
.
_spatial_scale
,
aligned
=
aligned
)
class
ConvNormActivation
(
Sequential
):
"""
Configurable block used for Convolution-Normalzation-Activation blocks.
This code is based on the torchvision code with modifications.
You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L68
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None,
in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., paddle.nn.Layer], optional): Norm layer that will be stacked on top of the convolutiuon layer.
If ``None`` this layer wont be used. Default: ``paddle.nn.BatchNorm2d``
activation_layer (Callable[..., paddle.nn.Layer], optional): Activation function which will be stacked on top of the normalization
layer (if not ``None``), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``paddle.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
None
,
groups
=
1
,
norm_layer
=
BatchNorm2D
,
activation_layer
=
ReLU
,
dilation
=
1
,
bias
=
None
):
if
padding
is
None
:
padding
=
(
kernel_size
-
1
)
//
2
*
dilation
if
bias
is
None
:
bias
=
norm_layer
is
None
layers
=
[
Conv2D
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
padding
,
dilation
=
dilation
,
groups
=
groups
,
bias_attr
=
bias
)
]
if
norm_layer
is
not
None
:
layers
.
append
(
norm_layer
(
out_channels
))
if
activation_layer
is
not
None
:
layers
.
append
(
activation_layer
())
super
().
__init__
(
*
layers
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录