test_conv2d_op.py 34.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
H
hong 已提交
19
import paddle
D
dzhwinter 已提交
20

21
import paddle
22
import paddle.fluid.core as core
L
liym27 已提交
23
import paddle.fluid as fluid
A
Adam Osewski 已提交
24 25
from paddle.fluid.tests.unittests.op_test import (
    OpTest, convert_float_to_uint16, get_numeric_gradient)
W
wuhuanzhou 已提交
26
from paddle.fluid.tests.unittests.testsuite import create_op
27
from paddle.fluid import Program, program_guard
28 29


L
liym27 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
49
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
50 51 52
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
53 54
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
55
    sub_out_c = out_c // group
L
liym27 已提交
56
    sub_f_n = f_n // group
C
chengduoZH 已提交
57

C
chengduoZH 已提交
58 59
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
80
        input_data_shape = input.shape[2:4]
L
liym27 已提交
81 82 83 84 85 86 87 88 89 90 91 92
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
93

武毅 已提交
94 95
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
96

L
liym27 已提交
97 98
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
99 100
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
101

L
liym27 已提交
102
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
103 104 105
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
106 107 108
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
109 110
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
111 112
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
113

L
liym27 已提交
114 115
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
116
                for k in range(sub_out_c):
L
liym27 已提交
117
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
118 119 120
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
121

L
liym27 已提交
122 123 124
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

125
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
126 127


L
liym27 已提交
128 129 130 131 132 133
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
134 135
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
160
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
161 162 163 164 165

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
166
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
167 168 169 170 171 172

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


W
wuhuanzhou 已提交
173 174
def create_test_cudnn_bf16_class(parent):
    @unittest.skipIf(
175 176 177
        not core.is_compiled_with_cuda() or
        not core.is_bfloat16_supported(core.CUDAPlace(0)),
        "core is not compiled with CUDA and do not support bfloat16")
W
wuhuanzhou 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    class TestConv2DCUDNNBF16(parent):
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Output'])

        def init_kernel_type(self):
            self.use_cudnn = True
            self.no_need_check_grad = True
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Input')
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                no_grad_set=set(['Filter']),
                user_defined_grads=[numeric_grads])

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Filter')
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                no_grad_set=set(['Input']),
                user_defined_grads=[numeric_grads])

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNBF16")
    TestConv2DCUDNNBF16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNBF16


L
liym27 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
239 240
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
272
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
273 274 275 276 277

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
278
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
279 280 281 282 283 284 285 286 287 288 289 290 291

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
320 321
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
338 339
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
340 341 342 343 344 345 346 347 348 349

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
350
class TestConv2DOp(OpTest):
351
    def setUp(self):
K
Kexin Zhao 已提交
352
        self.op_type = "conv2d"
353
        self.use_cudnn = False
354
        self.exhaustive_search = False
355
        self.use_cuda = False
356
        self.use_mkldnn = False
357
        self.fuse_relu_before_depthwise_conv = False
358
        self.data_format = "AnyLayout"
359
        self.dtype = np.float64
K
Kexin Zhao 已提交
360
        self.init_kernel_type()
C
chengduoZH 已提交
361
        self.init_group()
C
chengduoZH 已提交
362
        self.init_dilation()
C
chengduoZH 已提交
363
        self.init_test_case()
C
chengduoZH 已提交
364

C
chengduoZH 已提交
365 366 367 368 369
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
370

W
wuhuanzhou 已提交
371 372 373 374 375 376 377 378 379
        if self.is_bfloat16_op():
            input = np.random.random(self.input_size).astype(np.float32)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(np.float32)
        else:
            input = np.random.random(self.input_size).astype(self.dtype)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(self.dtype)

G
guomingz 已提交
380
        if not self.has_cuda():
381 382 383 384 385 386 387 388
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
L
liym27 已提交
389

390
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
391
                                                  conv2d_param)
K
Kexin Zhao 已提交
392

W
wuhuanzhou 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        if self.is_bfloat16_op():
            output = output.astype(np.float32)
            self.inputs = {
                'Input': convert_float_to_uint16(input),
                'Filter': convert_float_to_uint16(filter)
            }
            self.inputs_fp32 = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }
        else:
            output = output.astype(self.dtype)
            self.inputs = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }

H
hedaoyuan 已提交
410
        self.attrs = {
C
chengduoZH 已提交
411 412
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
413
            'groups': self.groups,
414
            'dilations': self.dilations,
415
            'use_cudnn': self.use_cudnn,
416
            'use_mkldnn': self.use_mkldnn,
417
            'data_format': self.data_format,
418 419
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
420
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
421
        }
422 423
        self.outputs = {'Output': output}

G
guomingz 已提交
424
    def has_cuda(self):
425 426
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
427

H
hedaoyuan 已提交
428
    def test_check_output(self):
G
guomingz 已提交
429
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
430 431 432
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
433

H
hedaoyuan 已提交
434
    def test_check_grad(self):
435 436
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
437
            return
G
guomingz 已提交
438
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
439
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
440
        self.check_grad_with_place(
441 442 443 444
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
445

446
    def test_check_grad_no_filter(self):
447 448
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
449
            return
G
guomingz 已提交
450
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
451
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
452 453 454 455
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
456 457
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
458 459

    def test_check_grad_no_input(self):
460 461
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
462
            return
G
guomingz 已提交
463
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
464
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
465 466 467
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
468 469
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
470

C
chengduoZH 已提交
471 472 473 474 475
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
476
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
477 478
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
479 480 481
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
482 483 484
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
485
    def init_group(self):
H
hedaoyuan 已提交
486 487
        self.groups = 1

K
Kexin Zhao 已提交
488 489
    def init_kernel_type(self):
        pass
武毅 已提交
490

H
hedaoyuan 已提交
491

C
cnn 已提交
492
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
493 494 495 496 497
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
498
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
499 500 501
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
502
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
503 504 505 506 507
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
508
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
509 510 511
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
512
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
513 514 515 516 517 518 519 520
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
521

武毅 已提交
522

C
cnn 已提交
523
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
524 525 526 527 528
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
529
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
530
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
531 532 533 534 535

    def init_group(self):
        self.groups = 3


C
cnn 已提交
536
class TestWithDepthWise3x3(TestConv2DOp):
537 538 539 540 541 542
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
543
        self.filter_size = [12, f_c, 3, 3]
544 545 546 547 548 549 550 551

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
552
class TestWithDepthWise5x5(TestConv2DOp):
553 554 555 556 557 558 559 560 561 562 563 564
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
565
class TestWithDepthWise7x7(TestConv2DOp):
566 567 568 569 570 571 572 573 574 575 576 577
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
578
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
579 580 581 582 583
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
584
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
585
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
586

C
chengduoZH 已提交
587 588
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
589

C
chengduoZH 已提交
590
    def init_group(self):
C
chengduoZH 已提交
591
        self.groups = 3
武毅 已提交
592

C
chengduoZH 已提交
593

C
cnn 已提交
594
class TestWithInput1x1Filter1x1(TestConv2DOp):
595 596 597
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
598
        self.input_size = [100, 3, 1, 1]  # NCHW
599
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
600
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
601
        self.filter_size = [120, f_c, 1, 1]
602 603 604 605 606

    def init_group(self):
        self.groups = 3


H
hong 已提交
607
# #----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
608

C
cnn 已提交
609
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
610 611 612 613 614
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
615

C
cnn 已提交
616
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
617

C
cnn 已提交
618
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
619 620 621 622 623
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
624

W
wuhuanzhou 已提交
625 626 627 628 629 630 631 632 633
#----------------Conv2DCUDNN bf16----------------

create_test_cudnn_bf16_class(TestConv2DOp)
create_test_cudnn_bf16_class(TestWithPad)
create_test_cudnn_bf16_class(TestWithStride)
create_test_cudnn_bf16_class(TestWithGroup)
create_test_cudnn_bf16_class(TestWith1x1)
create_test_cudnn_bf16_class(TestWithInput1x1Filter1x1)

634

C
cnn 已提交
635
class TestCUDNNExhaustiveSearch(TestConv2DOp):
636 637 638
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
639
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
640 641


C
cnn 已提交
642
class TestConv2DOpError(unittest.TestCase):
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


664 665
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
666
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
667 668 669
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
670 671 672
# ---- test asymmetric padding ----


C
cnn 已提交
673
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
674 675 676 677 678 679 680
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
681
        self.dtype = np.float64
L
liym27 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
736
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
737
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
738 739
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
740 741

    def test_check_grad(self):
742
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
743 744 745 746
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
747 748 749 750
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
751 752

    def test_check_grad_no_filter(self):
753
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
754 755 756 757 758 759 760
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
761 762
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
763 764

    def test_check_grad_no_input(self):
765
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
766 767 768 769 770 771
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
772 773
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
774 775 776

    def init_test_case(self):
        self.pad = [0, 0]
777
        self.stride = [1, 2]
L
liym27 已提交
778 779 780
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
781
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
803
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
804 805 806 807 808
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
809
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
810 811 812 813 814 815 816 817 818 819 820 821
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
822
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
823 824 825 826 827 828 829 830 831 832 833 834
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
835
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
836 837 838 839 840 841 842 843
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
844 845


C
cnn 已提交
846
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
847 848 849 850 851
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
852
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
853 854 855 856 857 858 859 860 861

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
862
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
863 864 865 866 867
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
868
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
869 870 871 872 873 874 875 876 877 878 879 880

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
881
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
897
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
913
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
914 915 916 917 918
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
919
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
920 921 922 923 924 925 926 927 928 929 930 931

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
932
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
933 934
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
935
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
936 937
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
938
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
939 940 941 942 943 944 945 946 947

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
948
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
949 950 951 952 953 954 955
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)

#---------- test SAME VALID -----------
C
cnn 已提交
956
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
957 958 959 960 961
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
962
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
963 964 965 966 967
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
968
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
969 970 971 972 973
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
974
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
975 976 977 978 979 980
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
981
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
982 983 984 985 986
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
987
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
988 989 990 991 992
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

993
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
994
    TestConv2DOp_AsyPadding, grad_check=False)
995 996 997 998 999 1000 1001 1002 1003
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

1004
if __name__ == '__main__':
H
hong 已提交
1005
    paddle.enable_static()
1006
    unittest.main()