test_conv2d_op.py 12.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
22 23


C
chengduoZH 已提交
24 25 26 27 28
def conv2d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_h, in_w = input.shape
    out_c, f_c, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
29
    sub_out_c = out_c // group
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31 32
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
M
minqiyang 已提交
33 34
    out_h = 1 + (in_h + 2 * pad[0] - (dilation[0] * (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + 2 * pad[1] - (dilation[1] * (f_w - 1) + 1)) // stride[1]
C
chengduoZH 已提交
35 36
    out = np.zeros((in_n, out_c, out_h, out_w))

武毅 已提交
37 38
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
39

C
chengduoZH 已提交
40
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
C
chengduoZH 已提交
41 42
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
43 44 45 46 47

    filter_dilation = np.zeros((out_c, f_c, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
48 49 50
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
51 52
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
53 54
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
55

C
chengduoZH 已提交
56 57
                f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                        sub_out_c, :, :, :]
C
chengduoZH 已提交
58
                for k in range(sub_out_c):
C
chengduoZH 已提交
59 60 61
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
62 63 64 65

    return out


H
hedaoyuan 已提交
66
class TestConv2dOp(OpTest):
67
    def setUp(self):
K
Kexin Zhao 已提交
68
        self.op_type = "conv2d"
69
        self.use_cudnn = False
70
        self.exhaustive_search = False
71
        self.use_cuda = False
72
        self.use_mkldnn = False
73
        self.data_format = "AnyLayout"
K
Kexin Zhao 已提交
74
        self.dtype = np.float32
K
Kexin Zhao 已提交
75
        self.init_kernel_type()
C
chengduoZH 已提交
76
        self.init_group()
C
chengduoZH 已提交
77
        self.init_dilation()
C
chengduoZH 已提交
78
        self.init_test_case()
C
chengduoZH 已提交
79

C
chengduoZH 已提交
80 81 82 83 84
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
85

K
Kexin Zhao 已提交
86 87
        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
K
Kexin Zhao 已提交
88
        output = conv2d_forward_naive(input, filter, self.groups,
K
Kexin Zhao 已提交
89 90 91
                                      conv2d_param).astype(self.dtype)

        self.inputs = {
K
Kexin Zhao 已提交
92 93
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
94
        }
H
hedaoyuan 已提交
95
        self.attrs = {
C
chengduoZH 已提交
96 97
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
98
            'groups': self.groups,
99
            'dilations': self.dilations,
100
            'use_cudnn': self.use_cudnn,
101
            'use_mkldnn': self.use_mkldnn,
102 103
            'data_format': self.data_format,
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
104
        }
105 106
        self.outputs = {'Output': output}

107 108 109
    def testcuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
110

H
hedaoyuan 已提交
111
    def test_check_output(self):
112
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
113
        self.check_output_with_place(place, atol=1e-5)
H
hedaoyuan 已提交
114

H
hedaoyuan 已提交
115
    def test_check_grad(self):
K
Kexin Zhao 已提交
116 117
        if self.dtype == np.float16:
            return
118
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
119
        self.check_grad_with_place(
Y
Yu Yang 已提交
120
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.02)
H
hedaoyuan 已提交
121

122
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
123 124
        if self.dtype == np.float16:
            return
125
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
126 127 128 129 130
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
            no_grad_set=set(['Filter']))
131 132

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
133 134
        if self.dtype == np.float16:
            return
135
        place = core.CUDAPlace(0) if self.testcuda() else core.CPUPlace()
136 137 138 139 140
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
            max_relative_error=0.02,
            no_grad_set=set(['Input']))
141

C
chengduoZH 已提交
142 143 144 145 146
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
147
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
148 149
        self.filter_size = [6, f_c, 3, 3]

C
chengduoZH 已提交
150 151 152
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
153
    def init_group(self):
H
hedaoyuan 已提交
154 155
        self.groups = 1

K
Kexin Zhao 已提交
156 157
    def init_kernel_type(self):
        pass
武毅 已提交
158

H
hedaoyuan 已提交
159

C
chengduoZH 已提交
160 161 162 163 164 165
class TestWithPad(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
166
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
167 168 169 170 171 172 173 174 175
        self.filter_size = [6, f_c, 3, 3]


class TestWithStride(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
176
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
177 178 179
        self.filter_size = [6, f_c, 3, 3]


H
hedaoyuan 已提交
180
class TestWithGroup(TestConv2dOp):
C
chengduoZH 已提交
181
    def init_group(self):
H
hedaoyuan 已提交
182 183
        self.groups = 3

武毅 已提交
184

C
chengduoZH 已提交
185 186 187 188 189 190
class TestWith1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
191
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
192 193 194 195 196 197
        self.filter_size = [6, f_c, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
198 199 200 201 202 203
class TestWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
204
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
205
        self.filter_size = [6, f_c, 3, 3]
C
chengduoZH 已提交
206

C
chengduoZH 已提交
207 208
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210
    def init_group(self):
C
chengduoZH 已提交
211
        self.groups = 3
武毅 已提交
212

C
chengduoZH 已提交
213

214 215 216 217 218 219
class TestWithInput1x1Filter1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 1, 1]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
220
        f_c = self.input_size[1] // self.groups
221 222 223 224 225 226
        self.filter_size = [6, f_c, 1, 1]

    def init_group(self):
        self.groups = 3


227
#----------------Conv2dCUDNN----------------
C
chengduoZH 已提交
228

K
Kexin Zhao 已提交
229

C
chengduo 已提交
230
def create_test_cudnn_class(parent):
C
chengduo 已提交
231 232 233 234 235
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
236

C
chengduo 已提交
237
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
C
chengduo 已提交
238 239
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
240

K
Kexin Zhao 已提交
241

C
chengduo 已提交
242 243 244 245 246 247
create_test_cudnn_class(TestConv2dOp)
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
248

C
chengduo 已提交
249
#----------------Conv2dCUDNN----------------
K
Kexin Zhao 已提交
250

C
chengduoZH 已提交
251

C
chengduo 已提交
252
def create_test_cudnn_fp16_class(parent, grad_check=True):
C
chengduo 已提交
253 254 255 256 257 258
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
武毅 已提交
259

C
chengduo 已提交
260 261 262 263 264
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)
K
Kexin Zhao 已提交
265

C
chengduo 已提交
266
        def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
267
            place = core.CUDAPlace(0)
C
chengduo 已提交
268 269 270 271 272 273 274 275
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
                    place, ['Input'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Filter']))

        def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
276
            place = core.CUDAPlace(0)
C
chengduo 已提交
277 278 279 280 281 282 283
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
                    place, ['Filter'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Input']))

C
chengduo 已提交
284
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
C
chengduo 已提交
285 286 287 288
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


C
chengduo 已提交
289 290 291 292 293 294
create_test_cudnn_fp16_class(TestConv2dOp, grad_check=False)
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
295 296

# -------TestDepthwiseConv
K
Kexin Zhao 已提交
297 298


299 300
class TestDepthwiseConv(TestConv2dOp):
    def init_test_case(self):
301
        self.use_cuda = True
302 303 304 305 306
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
307
        f_c = self.input_size[1] // self.groups
308
        self.filter_size = [3, f_c, 3, 3]
309
        self.op_type = "depthwise_conv2d"
310 311 312 313


class TestDepthwiseConv2(TestConv2dOp):
    def init_test_case(self):
314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [3, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


class TestDepthwiseConv3(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
328 329 330 331 332
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
333
        f_c = self.input_size[1] // self.groups
334
        self.filter_size = [6, f_c, 3, 3]
335
        self.op_type = "depthwise_conv2d"
336 337


338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
class TestDepthwiseConvWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


class TestDepthwiseConvWithDilation2(TestConv2dOp):
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv2d"


366 367 368 369 370 371
class TestCUDNNExhaustiveSearch(TestConv2dOp):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


372 373
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
374
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
375 376 377
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

378 379
if __name__ == '__main__':
    unittest.main()