test_conv2d_op.py 48.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle
21
import paddle.fluid.core as core
L
liym27 已提交
22
import paddle.fluid as fluid
23 24
from op_test import OpTest
from paddle.fluid import Program, program_guard
25 26


L
liym27 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
46
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
47 48 49
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
50 51
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
52
    sub_out_c = out_c // group
L
liym27 已提交
53
    sub_f_n = f_n // group
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55 56
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
77
        input_data_shape = input.shape[2:4]
L
liym27 已提交
78 79 80 81 82 83 84 85 86 87 88 89
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
90

武毅 已提交
91 92
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
93

L
liym27 已提交
94 95
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
96 97
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
98

L
liym27 已提交
99
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
100 101 102
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
103 104 105
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
106 107
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
108 109
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
110

L
liym27 已提交
111 112
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
113
                for k in range(sub_out_c):
L
liym27 已提交
114
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
115 116 117
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
118

L
liym27 已提交
119 120 121
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

122
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
123 124


L
liym27 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
155
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
156 157 158 159 160

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
161
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
219
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
220 221 222 223 224

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
225
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
226 227 228 229 230 231 232 233 234 235 236 237 238

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
293
class TestConv2DOp(OpTest):
294
    def setUp(self):
K
Kexin Zhao 已提交
295
        self.op_type = "conv2d"
296
        self.use_cudnn = False
297
        self.exhaustive_search = False
298
        self.use_cuda = False
299
        self.use_mkldnn = False
300
        self.fuse_relu_before_depthwise_conv = False
301
        self.data_format = "AnyLayout"
302 303
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
304
        self.init_kernel_type()
C
chengduoZH 已提交
305
        self.init_group()
C
chengduoZH 已提交
306
        self.init_dilation()
C
chengduoZH 已提交
307
        self.init_test_case()
C
chengduoZH 已提交
308

C
chengduoZH 已提交
309 310 311 312 313
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
314

K
Kexin Zhao 已提交
315
        input = np.random.random(self.input_size).astype(self.dtype)
G
guomingz 已提交
316
        if not self.has_cuda():
317 318 319 320 321 322 323 324
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
G
guomingz 已提交
325
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
L
liym27 已提交
326

327
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
328 329
                                                  conv2d_param)
        output = output.astype(self.dtype)
K
Kexin Zhao 已提交
330 331

        self.inputs = {
K
Kexin Zhao 已提交
332 333
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
334
        }
H
hedaoyuan 已提交
335
        self.attrs = {
C
chengduoZH 已提交
336 337
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
338
            'groups': self.groups,
339
            'dilations': self.dilations,
340
            'use_cudnn': self.use_cudnn,
341
            'use_mkldnn': self.use_mkldnn,
342
            'data_format': self.data_format,
343 344
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
345
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
346
        }
347 348
        self.outputs = {'Output': output}

G
guomingz 已提交
349
    def has_cuda(self):
350 351
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
352

H
hedaoyuan 已提交
353
    def test_check_output(self):
G
guomingz 已提交
354
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
355 356 357
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
358

H
hedaoyuan 已提交
359
    def test_check_grad(self):
360 361
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
362
            return
G
guomingz 已提交
363
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
364
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
365
        self.check_grad_with_place(
366 367 368 369
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
370

371
    def test_check_grad_no_filter(self):
372 373
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
374
            return
G
guomingz 已提交
375
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
376
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
377 378 379 380
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
381 382
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
383 384

    def test_check_grad_no_input(self):
385 386
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
387
            return
G
guomingz 已提交
388
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
389
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
390 391 392
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
393 394
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
395

C
chengduoZH 已提交
396 397 398 399 400
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
401
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
402 403
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
404 405 406
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
407 408 409
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
410
    def init_group(self):
H
hedaoyuan 已提交
411 412
        self.groups = 1

K
Kexin Zhao 已提交
413 414
    def init_kernel_type(self):
        pass
武毅 已提交
415

H
hedaoyuan 已提交
416

C
cnn 已提交
417
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
418 419 420 421 422
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
423
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
424 425 426
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
427
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
428 429 430 431 432
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
433
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
434 435 436
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
437
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
438 439 440 441 442 443 444 445
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
446

武毅 已提交
447

C
cnn 已提交
448
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
449 450 451 452 453
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
454
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
455
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
456 457 458 459 460

    def init_group(self):
        self.groups = 3


C
cnn 已提交
461
class TestWithDepthWise3x3(TestConv2DOp):
462 463 464 465 466 467
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
468
        self.filter_size = [12, f_c, 3, 3]
469 470 471 472 473 474 475 476

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
477
class TestWithDepthWise5x5(TestConv2DOp):
478 479 480 481 482 483 484 485 486 487 488 489
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
490
class TestWithDepthWise7x7(TestConv2DOp):
491 492 493 494 495 496 497 498 499 500 501 502
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
503
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
504 505 506 507 508
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
509
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
510
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
511

C
chengduoZH 已提交
512 513
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
514

C
chengduoZH 已提交
515
    def init_group(self):
C
chengduoZH 已提交
516
        self.groups = 3
武毅 已提交
517

C
chengduoZH 已提交
518

C
cnn 已提交
519
class TestWithInput1x1Filter1x1(TestConv2DOp):
520 521 522
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
523
        self.input_size = [100, 3, 1, 1]  # NCHW
524
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
525
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
526
        self.filter_size = [120, f_c, 1, 1]
527 528 529 530 531

    def init_group(self):
        self.groups = 3


C
cnn 已提交
532
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
533

C
cnn 已提交
534
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
535 536 537 538 539
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
540

C
cnn 已提交
541
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
542

C
cnn 已提交
543
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
544 545 546 547 548
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
549

L
liym27 已提交
550
#----------------TestDepthwiseConv -----
K
Kexin Zhao 已提交
551 552


C
cnn 已提交
553
class TestDepthwiseConv(TestConv2DOp):
554
    def init_test_case(self):
555
        self.use_cuda = True
556 557 558 559 560
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
561
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
562
        self.filter_size = [12, f_c, 3, 3]
563
        self.op_type = "depthwise_conv2d"
564 565


C
cnn 已提交
566
class TestDepthwiseConv2(TestConv2DOp):
567
    def init_test_case(self):
568 569 570 571 572 573 574
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
575
        self.filter_size = [12, f_c, 3, 3]
576 577 578
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
579
class TestDepthwiseConv3(TestConv2DOp):
580 581
    def init_test_case(self):
        self.use_cuda = True
582 583 584 585 586
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
587
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
588
        self.filter_size = [24, f_c, 3, 3]
589
        self.op_type = "depthwise_conv2d"
590 591


C
cnn 已提交
592
class TestDepthwiseConvWithDilation(TestConv2DOp):
593 594 595 596 597 598 599 600 601
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
602
        self.filter_size = [24, f_c, 3, 3]
603 604 605
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
606
class TestDepthwiseConvWithDilation2(TestConv2DOp):
607 608 609 610 611 612 613 614 615
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
616
        self.filter_size = [24, f_c, 3, 3]
617 618 619
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
620
class TestDepthwiseConvandFuse(TestConv2DOp):
621 622 623 624 625 626 627 628 629
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
630
        self.filter_size = [12, f_c, 3, 3]
631 632 633
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
634
class TestDepthwiseConv2andFuse(TestConv2DOp):
635 636 637 638 639 640 641 642 643
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
644
        self.filter_size = [12, f_c, 3, 3]
645 646 647
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
648
class TestDepthwiseConv3andFuse(TestConv2DOp):
649 650 651 652 653 654 655 656 657
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
658
        self.filter_size = [24, f_c, 3, 3]
659 660 661
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
662
class TestDepthwiseConvWithDilationandFuse(TestConv2DOp):
663 664 665 666 667 668 669 670 671 672
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
673
        self.filter_size = [24, f_c, 3, 3]
674 675 676
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
677
class TestDepthwiseConvWithDilation2andFuse(TestConv2DOp):
678 679 680 681 682 683 684 685 686 687
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
688
        self.filter_size = [24, f_c, 3, 3]
689 690 691
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
692
class TestCUDNNExhaustiveSearch(TestConv2DOp):
693 694 695 696 697
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


C
cnn 已提交
698
class TestConv2DOpError(unittest.TestCase):
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


720 721
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
722
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
723 724 725
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
726 727 728
# ---- test asymmetric padding ----


C
cnn 已提交
729
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
730 731 732 733 734 735 736
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
737 738
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
793
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
794
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
795 796
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
797 798

    def test_check_grad(self):
799
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
800 801 802 803
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
804 805 806 807
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
808 809

    def test_check_grad_no_filter(self):
810
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
811 812 813 814 815 816 817
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
818 819
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
820 821

    def test_check_grad_no_input(self):
822
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
823 824 825 826 827 828
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
829 830
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
831 832 833

    def init_test_case(self):
        self.pad = [0, 0]
834
        self.stride = [1, 2]
L
liym27 已提交
835 836 837
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
838
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
860
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
861 862 863 864 865
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
866
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
867 868 869 870 871 872 873 874 875 876 877 878
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
879
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
880 881 882 883 884 885 886 887 888 889 890 891
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
892
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
893 894 895 896 897 898 899 900
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
901 902


C
cnn 已提交
903
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
904 905 906 907 908
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
909
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
910 911 912 913 914 915 916 917 918

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
919
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
920 921 922 923 924
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
925
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
926 927 928 929 930 931 932 933 934 935 936 937

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
938
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
954
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
970
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
971 972 973 974 975
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
976
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
977 978 979 980 981 982 983 984 985 986 987 988

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
989
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
990 991
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
992
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
993 994
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
995
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
996 997 998 999 1000 1001 1002 1003 1004

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1005
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1006 1007 1008 1009 1010 1011 1012
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)


C
cnn 已提交
1013
class TestDepthwiseConv_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1014 1015 1016 1017 1018 1019 1020
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1021
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1022 1023 1024 1025 1026 1027 1028
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1029
class TestDepthwiseConv2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1030 1031 1032 1033 1034 1035 1036
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1037
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1038 1039 1040 1041 1042 1043 1044
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1045
class TestDepthwiseConv3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1046 1047 1048 1049 1050 1051 1052
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1053
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1054 1055 1056 1057 1058 1059 1060
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1061
class TestDepthwiseConvWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1071
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1072 1073 1074 1075 1076 1077 1078
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1079
class TestDepthwiseConvWithDilation2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1089
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1090 1091 1092 1093 1094 1095 1096
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1097
class TestDepthwiseConvandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1107
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1108 1109 1110 1111 1112 1113 1114
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 2, 3]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1115
class TestDepthwiseConv2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1125
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1126 1127 1128 1129 1130 1131 1132
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1133
class TestDepthwiseConv3andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1143
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1144 1145 1146 1147 1148 1149 1150
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 2, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1151
class TestDepthwiseConvWithDilationandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1162
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1163 1164 1165 1166 1167 1168 1169
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1170
class TestDepthwiseConvWithDilation2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1181
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1182 1183 1184 1185 1186 1187 1188 1189
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 3, 1, 3]
        self.padding_algorithm = "EXPLICIT"


#---------- test SAME VALID -----------
C
cnn 已提交
1190
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1191 1192 1193 1194 1195
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1196
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1197 1198 1199 1200 1201
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1202
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1203 1204 1205 1206 1207
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1208
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# depthwise conv2d

create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
1227
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

C
cnn 已提交
1238
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1239 1240 1241 1242 1243
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

1244
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
1245
    TestConv2DOp_AsyPadding, grad_check=False)
1246 1247 1248 1249 1250 1251 1252 1253 1254
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

L
liym27 已提交
1255 1256

# --------- test python API ---------------
C
cnn 已提交
1257
class TestConv2DAPI(unittest.TestCase):
L
liym27 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    def test_api(self):

        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=0,
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[1, 2, 1, 0],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1],
            groups=1,
            data_format="NHWC")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="SAME",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="VALID",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    def test_depthwise_conv2d(self):
        x_var = paddle.uniform((2, 8, 8, 4), dtype='float32', min=-1., max=1.)
        conv = paddle.nn.Conv2D(
            in_channels=4,
            out_channels=4,
            kernel_size=(3, 3),
            groups=4,
            data_format='NHWC')
        y_var = conv(x_var)

L
liym27 已提交
1342

C
cnn 已提交
1343
class TestConv2DAPI_Error(unittest.TestCase):
L
liym27 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=[0],
                data_format="NCHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding="SAMEE",
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv2d(
                input=x,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=3,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_7)


1461 1462
if __name__ == '__main__':
    unittest.main()